DOI QR코드

DOI QR Code

Pop-In Deformation in Aluminum under Nanoindentation

나노인덴테이션 하에서의 알루미늄의 팝인 변형

  • Kim, Jisoo (Department of Materials Engineering, Graduate School, Kyungnam University, Electron Microscopy Team, Division of Nano-environmental Research, Korea Basic Science Institute) ;
  • Yun, Jondo (Division of Advanced Materials Engineering, Kyungnam University)
  • 김지수 (경남대학교 대학원 재료공학과, 한국기초과학지원연구원 나노환경연구부 전자현미경팀) ;
  • 윤존도 (경남대학교 신소재공학부)
  • Published : 2005.04.01

Abstract

Pop-in deformation phenomena in aluminum was studied. Whether a pop-in occurs or not depended on the surface polishing method. Pop-in did not occur in aluminum which was polished mechanically, while it occurred in aluminum which was polished electrically. When pop-in occurred, elastic deformation preceded. Pop-in mechanism based on dislocation activity was suggested. Suggested mechanism was consistent with the result of microstructure analysis by Focused Ion Beam polisher (FIB) and Transmission Electron Microscopy (TEM).

나노인덴테이션 시험시의 알루미늄의 팝인 변형에 대하여 연구하였다. 팝인 현상은 알루미늄의 표면 상태에 따라서 발생 유무가 결정되었다. 기계연마한 알루미늄에서는 팝인이 일어나지 않았고, 전해연마한 시편에서만이 팝인이 일어났다. 팝인이 일어나는 경우에는 나노인덴테이션 초기단계에서 탄성변형이 일어났으며 그 후에 갑자기 팝인 변형이 일어났으며 팝인 후에는 탄소성 변형이 일어났다. 전위 활동에 근거한 팝인 발생 메카니즘을 제시하였으며 이는 FIB와 TEM에 의한 미세구조 분석 결과와 일치하였다.

Keywords

References

  1. B. Kim, J. Yun, and J. Kim, ' Characterization of Thin Film Materials by Using Nanoindentation and Scanning Probe Microscopy,' J. Kor. Mater. Res. Soc., 13 [9] 606-12 (2003) https://doi.org/10.3740/MRSK.2003.13.9.606
  2. J. Yun, ' Characterization by Nanoindentation Scanning Probe Microscopy,' Ceramist, 5 [2] 8-16 (2002)
  3. W. C. Oliver and G M. Pharr , ' An Improved Technique for Determining Hardness and Elastic Modulus Using Load Displacement Sensing Indentation Experiments,' J. Mater. Res., 7 [6] 1564-83 (1992) https://doi.org/10.1557/JMR.1992.1564
  4. A. C. Fischer-Cripps, ' Nanoindentation,' Springer-Verlag New York, Inc., New York, USA (2002)
  5. B. Taljat, T. Zacharia, and G. M. Pharr , ' Pile-Up Behavior of Spherical Indentations in Engineering Materials,' Mat. Res. Soc. Symp. Proc., 522 33-8 (1998)
  6. J. Kim, H. Yang, J. Yun, and S. Cho, ' Nanoindentation Deformation Behavior and Three Dimensional Finite Element Analysis,' J. Kor. Mater. Res. Soc., 14 [6] 436-42 (2004) https://doi.org/10.3740/MRSK.2004.14.6.436
  7. P. Grau., ' Fundamental of Dislocation Nucleation at Nanoindentation,' Radiation effects on Defects in Solids, 157 863-69 (2002) https://doi.org/10.1080/10420150215829
  8. J. E. Bradby, J. S. Williams, and J. Wong-Leung, ' Mechanical Deformation of InP and GaAs by Spherical Indentation,' Am. Ins. Phys., 78 [21] 3235-37 (2001)
  9. Y. L. Chiu, ' Time-Dependent Characteristics of Incipient Plasticity in Nanoindentation of a $Ni_{3}Al$ Single Crystal,' Acta Mater., 50 1599-611 (2002) https://doi.org/10.1016/S1359-6454(02)00025-3
  10. A. M. Minor and E. T. Lilleodden, ' In-Situ Transmission Electron Microscopy Study of the Nanoindentation Behavior of Al,' J. Electron. Mater., 31 [10] 958-64 (2002) https://doi.org/10.1007/s11664-002-0028-4
  11. S. V. Hainsworth, T. Bartlett, and T. F. Page, ' The Nanoindentation Response of Systems with Thin Hard Carbon Coatings,' Thin Solid Films, 236 214-18 (1993) https://doi.org/10.1016/0040-6090(93)90672-C
  12. R. F. Cook and G. M. Pharr, ' Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics,' J. Am. Ceram. Soc., 73 [4] 787-817 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05119.x