고정크기 패킷 네트워크 환경에서 할당율에 비례한 저지연 한계를 제공하는 계층적 라운드-로빈 알고리즘

A Hierarchical Round-Robin Algorithm for Rate-Dependent Low Latency Bounds in Fixed-Sized Packet Networks

  • 편기현 (전북대학교 전자정보공학부)
  • 발행 : 2005.04.01

초록

보장서비스에서 실시간 패킷 스케줄링 알고리즘은 높은 네트워크 유용도와 확장성있는 구현의 양쪽 모두를 성취해야만 한다. 여기서 네트워크 유용도는 승인하는 실시간 세션의 수를 나타낸다. 불행히도, 현존하는 스케줄링 알고리즘은 확장성있는 구현에 문제점을 갖거나 성취할 수 있는 네트워크 유용도가 낮다. 가령 타임스템프에 기반한 알고리즘은 N이 세션의 수를 나타낼 때 O(log N) 스케줄링 복잡도를 가진다. 반면 라운드-로빈 알고리즘은 O(1) 복잡도를 가지지만 성취할 수 있는 네트워크 유용도가 낮다. 이 논문은 확장성을 잃지 않으면서도 높은 네트워크 유용도를 성취할 수 있는 스케줄링 알고리즘을 제안한다. 제안하는 알고리즘은 서로 다른 시간 구간 크기에 대해서 다중 라운드를 활용하는 계층적 라운드-로빈 (H-RR) 알고리즘이다. 이 알고리즘은 우선 순위 큐를 사용하는 PGPS 알고리즘이 제공하는 것과 비슷한 지연의 한계를 제공하지만, 구현 복잡도가 상수라는 큰 장점을 갖는다.

In the guaranteed service, a real-time scheduling algorithm must achieve both high level of network utilization and scalable implementation. Here, network utilization indicates the number of admitted real-time sessions. Unfortunately, existing scheduling algorithms either are lack of scalable implementation or can achieve low network utilization. For example, scheduling algorithms based on time-stamps have the problem of O(log N) scheduling complexity where N is the number of sessions. On the contrary, round-robin algorithms require O(1) complexity. but can achieve just a low level of network utilization. In this paper, we propose a scheduling algorithm that can achieve high network utilization without losing scalability. The proposed algorithm is a Hierarchical Round-Robin (H-RR) algorithm that utilizes multiple rounds with different interval sizes. It provides latency bounds similar to those by Packet-by-Packet Generalized Processor Sharing (PGPS) algorithm using a sorted-Priority queue. However, H-RR requires a constant time for implementation.

키워드

참고문헌

  1. S. Shenker, C. Partridge, and R. Guerin, Specification of Guaranteed Quality of Service, September 1997. RFC 2212
  2. William Stallings, High-Speed Networks: TCP/IP and ATM Design Principles. Prentice Hall, 1998
  3. H. Zhang. Service Disciplines for Guaranteed performance Service in Packet-Switching Networks. Proc. IEEE, 3(4):391-430, 1995 https://doi.org/10.1109/5.469298
  4. Hanrijanto Sariowan, Rene L. Cruz, and George C. Polyzos. SCED: A Generalized Scheduling Policy for Guaranteeing Quality-of-Service. IEEE/ ACM Tran. Networking, 7(5):669-684, October 1999 https://doi.org/10.1109/90.803382
  5. A. K. J. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow Control in Integrated Service Networks: The Single Node Case. IEEE/ACM Tran: Networking, 1(3):344-357, June 1993 https://doi.org/10.1109/90.234856
  6. A. K. J. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow Control in Integrated Service Networks: The Multiple Node Case. IEEE/ ACM Tran. Networking, (2):137-150, April 1994 https://doi.org/10.1109/90.298432
  7. S. Jamaloddin Golestani. Network Delay Analysis of a Class of Fair Queueing Algorithms. IEEE JSAC, 13(6):1057-1070, August 1995 https://doi.org/10.1109/49.400661
  8. Jon C.R. Bennett and Hui Zhang. WF2Q: Worst-Case Fair Weighted Fair Queueing. In INFOCOM, pages 120-128, 1996 https://doi.org/10.1109/INFCOM.1996.497885
  9. Leonidas Georgiadis, Roch Gu'erin, Vinod Peris, and Kumar N. Sivarajan, Efficient Network QoS Provisioning Based on per Node Traffic Shaping. IEEE/ACM Tran. Networking, 4(4):482-501, August 1996 https://doi.org/10.1109/90.532860
  10. Ion Stoica, Hui Zhang, and T. S. Eugene Ng. A Hierarchical Fair Service Curve Algorithm for Link-Sharing, Real-Time and Priority Services. IEEE/ACM Tran. Networking, 8(2):185-199, 2000 https://doi.org/10.1109/90.842141
  11. N. Figueira and J. Pasquale. An Upper Bound on Delay for the Virtual-Clock Service Discipline. IEEE/ACM Tran. Networking, 3(4):399-408, August 1995 https://doi.org/10.1109/90.413214
  12. J.C.R. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algorithms. IEEE/ACM Tran. Networking, 5(5):675-689, October 1997 https://doi.org/10.1109/90.649568
  13. S. Golestani. A Self-Clocked Fair Queueing Scheme for Broadband Applications. In INFOCOM, pages 636-646, 1994 https://doi.org/10.1109/INFCOM.1994.337677
  14. Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Start-Time Fair Queueing: A Scheduling Algorithm for Integrated Services Packet Switching Networks. IEEE/ACM Tran. Networking, 5(5):690-704, October 1997 https://doi.org/10.1109/90.649569
  15. Norival R. Figueira and Joseph Pasquale. A Schedulability Condition for Deadline-Ordered Service Disciplines. IEEE/ACM Tran. Networking, 5(2):232-244, April 1997 https://doi.org/10.1109/90.588088
  16. Pawan Goyal. Packet Scheduling Algorithms for Integrated Services Networks. PhD thesis, The University of Texas at Austin, August 1997
  17. Debanjan Saha, Sarit Mukherjee, and Satish K. Tripathi. Multirate Scheduling of VBR Video Traffic in ATM Networks. IEEE JSAC, 15(6): 1132-1147, August 1997 https://doi.org/10.1109/49.611164
  18. D. Stiliadis and A. Varma. Rate-Proportional Servers: A Design Methodology for Fair Queueing Algorithms. IEEE/ACM Tran. Networking, 6(2): 164-174, April 1998 https://doi.org/10.1109/90.664265
  19. D. Stiliadis and A. Varma. Latency-Rate Servers: A General Model for Analysis of Traffic Scheduling Algorithms. IEEE/ACM Tran. Networking, 6(5):611-624, October 1998 https://doi.org/10.1109/90.731196
  20. Pawan Goyal and Harrick M. Vin. Generalized Guaranteed Rate Scheduling Algorithms: A Framework. IEEE/ACM Tran. Networking, 5(4):561-571, August 1997 https://doi.org/10.1109/90.649514
  21. Massoud R. Hashemi and Alberto Leon-Garcia. The Single-Queue Switch: A Building Block for Switches with Programmable Scheduling. IEEE JSAC, 15(5):785-794, June 1997 https://doi.org/10.1109/49.594841
  22. P. Lavoie and Y. Savaria. A systolic architecture for fast stack sequential decoders. IEEE Tran. Communications, 42(2/3/4):324-335, Feb./Mar./Apr. 1994 https://doi.org/10.1109/TCOMM.1994.577044
  23. M. Shreedhar and George Varghese. Efficient Fair Queuing Using Deficit Round-Robin. IEEE/ACM Tran. Networking, 4(3):375-385, June 1996 https://doi.org/10.1109/90.502236
  24. Salil S.Kanhere and Harish Sethu. Fair, Efficient and Low-Latency Packet Scheduling Using Nested Deficit Round Robin. In IEEE Workshop on High Performance Switching and Routing, pages 6-10, 2001 https://doi.org/10.1109/HPSR.2001.923594