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Abstract

We propose in this article a procedure for testing wunit and fractional orders of
integration, with the roots simultaneously occurring in the trend, the seasonal and the
cyclical component of the time series. The tests have standard null and local limit
distributions. However, finite sample critical values are computed, and several Monte
Carlo experiments conducted across the paper show that the rejection frequencies against
unit (and fractional) orders of integration are relatively high in all cases. The tests are
applied to the UK consumption and income series, the results showing the importance of
the roots corresponding to the trend and the seasonal components and, though the unit
roots are found to be fairly suitable models, we show that fractional processes (including
one for the cyclical component) may also be plausible alternatives in some cases.

Keywords : Long memory; Fractional integration, Seasonality; Stochastic cycles
1. Introduction

It is well-known that many macroeconomic time series contain trends, seasonal as well as
cyclical components. However, while the literature on the trend and the seasonal components is
quite extended, little attention has been paid to the cyclical component of the series. Initially, the
trend was explained in terms of deterministic (linear) functions of time. Later on, however, it was
observed that the trend component changed or evolved over time, and stochastic approaches
(based on first or second differences of the data) were proposed, especially after the seminal
paper of Nelson and Plosser (1982). In that paper, following the work and ideas of Box and
Jenkins (1970), they showed that many US macroeconomic series could be specified in terms of
unit root processes. Following that work, many test statistics were developed for testing unit
roots, (e.g., Dickey and Fuller, 1979; Phillips and Perron, 1988; Kwiatkowski et al., KPSS, 1992;
etc.). Similarly, for the seasonal component, deterministic models based on seasonal dummy
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variables were shown to be inappropriate in many cases, and seasonal unit-root tests were
developed by Dickey, Hasza and Fuller (DHF, 1984); Hylleberg, Engle, Granger and Yoo (HEGY,
1990); Canova and Hansen (1995), and others. In relation to the cyclical component, the literature
is scarce. A large number of publicatons exist on business cycles, chronology of peaks and
troughts, etc. However, most of these papers do not consider the cyclical structure by itself, that
is, independently of the trend and the seasonal components. Ahtola and Tiao (1987) developed
tests for unit root cycles and, more recently, Bierens (2001) and Gil-Alana (2001) propose
unit-root cycles for modelling several macroeconomic series. In this article we try to combine all
these components in the same framework, testing for the presence of stochastic trends, seasonal
and cyclical components in a unified testing procedure. The tests are due to Robinson (1994) and,
unlike most of the procedures mentioned above, (which are based on autoregressive (AR)
alternatives), the tests of Robinson (1994) are nested in fractional models. Additionally, they have
standard null and local limit distributions.

The outline of the paper is as follows: Section 2 briefly describes the testing procedure of
Robinson (1994), which allows us to test for the presence of unit roots (with integer or fractional
orders of integration) in the trend, the seasonal and the cyclical components of the series. In
Section 3 we compute finite sample critical values of the tests and a Monte Carlo experiment is
conducted to examine the size and the power properties of the tests in finite samples. In Section
4, the tests are applied to the quarterly, seasonally unadjusted, consumption and income series in
the UK, while Section 5 concludes.

2. Testing of Roots in the Trend, the Seasonal and the Cycles

A slight variation in the set up in Robinson (1994) leads to the model:

h
A-L)*% Q-1 []A-2c0s w,L + L)% x = u,
j=3 (1)

for a given number h, where di, -, dn are given real numbers, x: is the time series we
observe, and u; is an I(0) process, defined, for the purpose of the present paper, as a covariance
stationary process with spectral density function that is positive and finite at any frequency on
the spectrum. Under the null hypothesis, defined by:

Hy: 0 = (6,,6,,...0,) = 0, @)

the model in (1) becomes:
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h
-0 Q-1 J]a-2cos w,L + L) x, = u,.
j=3 3)

We see that this is a very general specification, which allows us to consider several models of
interest. For example, imposing di = 1 and d; = 0 for § # 1, we test for an I{1) process and, if
di = d, we test for fractionally integrated hypotheses. Empirical applications of this version of the
tests can be found in Gil Alana and Robinson (1997), Gil Alana (2000a), and other empirical
studies of I(d) processes at the long run or zero frequency are, for example, Diebold and
Rudebusch (1989), Baillie and Bollerslev (1989) and Baillie (1996). Similarly, if d2 = 1 and d; = 0
for j # 2, we test for seasonal unit roots and, if dz = d, for seasonal fractional integration. (See,
e.g., Porter Hudak, 1990 and Gil Alana and Robinson, 2001). Finally, unit root cycles will be
tested if d3 = 1 and d; = 0 for j = 3 (Bierens, 2001; Gil Alana, 2001), and extensions to
fractional models have been studied by Gray et al. (1989, 1994), Chung (1996a, b), Ferrara and
Guegan (2001) amongst others. Each of these works tests for roots in the trend, the seasonal and
the cycle separately. However, we can take h = 3 in (1) and (3) and consider the null model:

A-L)Y" A-LYH" (1-2cosw,L +L)H"x, = u,, (4)

for different real values di, dz and ds; testing thus for roots at all the components
simultaneously: di will indicate the degree of integration of the trend component, ie., with a root
occurring at the long run or zero frequency; dz will be the order of integration of the seasonal
component, i.e., implying roots at 0, @ and n/2 (3n/2) (of a cycle 2n); while ds will be the order of
integration of the cycle, with the periodicity determined by w, = 2nr/T, r = T/j and j indicating
the number of periods per cycle. Specifically, the test statistic is:

N T ay Al A
R=-042
PYR 5)

where T is the sample size and

3 = 2% 3 sy .oA2 2.0 27 < o . 27
a= = ;w(z,)guj,r) ), & = o*@ = _T_;g@j,f) 1 4 ==

4= % PNACHYICHIE Zw(ﬂ,)é(ﬂj)'x(Zé(ﬂ,)é(&-)'J x 2 EA) W) |;
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25in£2’— ; log |2(coslj - cosw,)

; log }

w(d,) = [log

2sin—L
2

4
+log 2cos—2- +log|2 cos A,

£(4,) = 2 log g(4,59),
ot

where g(A; 1) is a known function related to the spectral density of u¢ f(AT) =  (6%/21) g(A; 1),
evaluated at 7 = arg min 0%(t). Note that these tests are purely parametric and therefore, they
require specific modelling assumptions regarding the short memory specification of w. Thus, for
example, if u, is white noise, g = 1 (&(4A ;)=0), and if w is an AR process of form ®(L)uc =
& g = leMl % with ¢® = V(g), so that the AR coefficients are a function of T. IQA) is the
periodogram of u; defined as in (4), and the summation on * in the above expressions are over A
€ M where M = {A! -1 < A < ;, Az (px My, Pk +M1), k = 1,2,-+s}, such that px, k = 1,2,~'s < o
are the distinct poles of ¥(A) on (-m7].

Based on H, in (2), (with h = 3), Robinson (1994) showed that, under certain regularity
conditions, the above test statistic has an asymptotic distribution given by:

~

R > y2, as T — . 6)

A 2
Thus, a test of (2) will reject H, against the alternative Ho: 8 # 0 if R > X34, where Prob

2 2
(X3 >X3a) = a. Moreover, Robinson (1994) shows that the test is efficient in the Pitman sense,
ie., that against local alternatives of form: Ha 8 = § T2 , with & # 0, the limit distribution

is 132 (v) with a non centrality parameter, U, that is optimal, under Gaussianity of u, with respect
to any other rival regular statistic. However, in spite of its standard limit distribution, we know
that in finite samples, the results of the tests based on the asymptotic critical values can
substantially differ from those obtained based on finite sample values (see, e.g. Gil Alana,
2000b). Thus, in the following section, we evaluate finite sample critical values of the test
described just above.

3. A Finite Sample Experiment

In Table 1 we compute finite sample critical values of the test statistic given by R in (8),
testing H, (2) in a model given by:
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(- L)% 1 - IH%*% (1-2cosw, L+ [*)**%x, = u, 0

with white noise u.. We generate Gaussian series, using the routines GASDEV and RAN3 of
Press, Flannery, Teukolsky and Wetterling (1986), computing the values for w, = 2nr/T, r = T/j,
r = T/2, T/4, T/5, T/10 and T/20, and T = 100, 200 and 300. Note that since the model does not
include deterministic regressors (like an intercept or a linear trend), there are not nuisance
parameters, neither in the limit distribution nor in the finite sample one, and d does not affect
the finite sample critical values, unlike the parameter r, which is required for the computation of
the test statistic.

<Table 1> Finite sample critical values of R given by (5)

Size " Values of r Asymptotic
/2 /4 5 T/10 T/20 Crit. values
o0 1% 2453 17.99 17.75 18.73 18.75 1135
5% 11.83 10.53 9.93 9.50 9.87 7.82
200 1% 24.14 16.70 17.01 16.87 18.01 1135
5% 10.94 9.17 8.92 8.82 8.83 7.82
200 1% 2311 1536 15.69 16.08 15.79 11.35
5% 10.80 8.87 8.64 8.42 8.71 7.82

10,000 replications were used in each case.

We observe in this table that the critical values are in all cases higher than those given by the
x23 distribution, implying that when testing Ho: 0 = 0 against Ha: 6 # 0, the tests based on the
asymptotic critical values will reject the null more often than those based on the finite sample

ones. We also observe that these values substantially change with r, though in a non monotonic
way and, as we increase the number of observations, all of them tend to approximate to the
asymptotic values given by the x23 distribution.

In Table 2 we examine the size and the power properties of the tests. We assume that the
true model is given by (4) with white noise u; and r = T/10. The choice of r is completely
arbitrary. Other values were also tried and the results were very similar to those reported in this
table. The alternatives are in all cases of form as in (7) with 61, 82 and 8; equal to -1, -0.5 and
0, ie., corresponding to processes with orders of integration of 0, 0.5 and 1. The same value of
w; is taken under both the null and the alternative hypotheses. Thus, the rejection frequencies
corresponding to 8; = 82 = 83 = 0 will indicate the size of the tests. The nominal size is 5% and
10,000 replications are used in each case.
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<Table 2> Rejection frequencies of R given by (5)

Truemodel: 1 —L) (A =LY (1 -2cosw,L+ L) x, =¢,; r =T/10.
Alternatives: 1 — L) (1= IY)* (1 -2cosw,L + L*)* x, = ¢; r = T/10.
T = 100 T = 200 T = 300
& ¢ d FSCV ASYMP FSCV ASYMP FSCV ASYMP
0.00 0.00 0.00 1.000 1.000 1.000 1.000 1.000 1.000
0.00 0.00 0.50 0.780 0.827 0.823 0.931 0.998 1.000
0.00 0.00 1.00 1.000 1.000 1.000 0.999 1.000 1.000
0.00 0.50 0.00 1.000 1.000 1.000 1.000 1.000 1.000
0.00 0.50 0.50 0.772 0.821 0.973 0.995 1.000 1.000
0.00 0.50 1.00 1.000 1.000 0.999 1.000 1.000 1.000
0.00 1.00 0.00 1.000 1.000 1.000 1.000 1.000 1.000
000 | 100 0.50 0.763 0.817 0.953 0.964 1.000 1.000
0.00 1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.00 0.00 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.00 0.50 0.821 0.858 0.999 1.000 1.000 1.000
0.50 0.00 1.00 0.992 0.992 1.000 1.000 1.000 1.000
0.50 0.50 0.00 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.50 0.50 0.821 0.856 1.000 1.000 1.000 1.000
0.50 0.50 1.00 0.998 0.998 1.000 1.000 1.000 1.000
0.50 1.00 0.00 1.000 1.000 0.999 0.998 1.000 1.000
0.50 1.00 0.50 0.821 0.857 0.953 0.959 0.999 0.999
0.50 1.00 1.00 0.987 0.995 1.000 0.999 1.000 1.000
1.00 0.00 0.00 0.995 0.998 1.000 1.000 1.000 1.000
1.00 0.00 0.50 0.825 0.867 1.000 1.000 1.000 1.000
1.00 0.00 1.00 0.836 0.893 0.943 0.993 0.999 0.999
1.00 0.50 0.00 1.000 1.000 1.000 1.000 1.000 1.000
1.00 0.50 0.50 0.831 0.865 0.995 0.999 1.000 1.000
1.00 0.50 1.00 0.638 0.708 0.875 0.905 0.995 0.999
1.00 1.00 0.00 1.000 1.000 1.000 1.000 1.000 1.000
1.00 1.00 0.50 0.836 0.866 0.958 0.976 0.999 1.000
1.00 1.00 1.00 0.052 0.103 0.052 0.087 0.051 0.079

The sizes are in bold. The nominal size is 5% and 10,000 replications were used in each case.

We see that the sizes of the tests based on the asymptotic critical values are in all cases too
large though they tend to approximate to the nominal value of 5% as T increases. Thus, it is
10.3% when T = 100; it becomes 8.7% with T = 200, and reduces to 7.9% when T = 300. The
larger sizes of the asymptotic tests are also associated with some superior rejection frequencies
relative to the finite sample tests. (Note that in case of 8i # 0 for any i = 1, 2, 3, the rejection
probabilities can be considered as misspecification tests to the specified null). However, we
observe that even if the sample size is 100, the rejection probabilities are relatively high for both
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tests, exceeding 0.700 in practically all cases. Increasing the sample size, the rejection frequencies
become even higher, and if T = 300, they approximate to 1 for all types of alternatives. The
results presented in this table suggest that the optimal local power properties of the tests of
Robinson (1994) may also hold reascnable well against non local departures from the null, and
given the lack of empirical work in this context, an empirical study of fractionally based models
for each of these components seems overdue.

4. An Empirical Application

The time series data analysed in this section correspond to the logarithmic transformations of
the quarterly, seasonally unadjusted, consumption expenditure on non durables {(ct), and personal
disposable income (yu), in the UK, for the time period 19551 - 1984q4. These data were used
by HEGY (1990) for testing seasonal unit roots and also by Gil Alana and Robinson (2001) in
the context of seasonal fractional integration. In the first of these articles, they found that c;
could be I(1) at each of the frequencies 0, & and n/2 (3n/2), while y: may contain only two unit
roots, at 0 and . Gil-Alana and Robinson (2001) extend these results and find that the roots
could also be fractional. However, in both articles, the authors concentrate exclusively on the
seasonal structure of the series and do not pay any attention to the trend and the cyclical
components. The data are shown in Figure 1.

We see that the two series have strong trend and seasonal components. In fact, taking first
differences, we observe (in the second part of the figure) that a seasonal structure is still present
in the data, with possible changing patterns, especially for y:. Taking seasonal differences, the
resulting series appear to be stationary, though a cyclical structure could still be present in the
data.

Denoting any of the series by y:, we employ throughout model (7), testing H, (2) for values di,
dy and ds equal to 0, 050 and 1, and r = T/}, § = 20, 21, 22, 23 and 24. The choice of j was
made based on the fact that the cycles in economics seem to occur every 5 or 6 years (e,
corresponding to 20 or 24 quarters). Moreover, when testing H, (2) with ] < 20 or j > 24, the
null was rejected in practically all cases for all values of the d's. The results for white noise us

are given in Tables 3 and 4 and they correspond to the test statistic given by R in (5).
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<Figure 1> The time series data in the UK for the time period 1955ql - 1984q4
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<Table 3> Testing H, (2) in (7) with R of (5) and white noise u: in the consumption series

Orders of integration Values of r

d dz ds T/20 T/21 T/22 T/23 T/24
0.00 0.00 0.00 5515949053 5369284635 6200944268 648762025 7902631590
0.00 0.00 0.50 11.35 15.69 12.99 13.51 15.32
0.00 0.00 1.00 331.09 219.30 172.50 129.35 107.48
0.00 0.50 0.00 1895.67 1875.72 2168.57 2293.54 2770.66
0.00 050 0.50 11.20 15.54 12.93 13.47 15.26
0.00 0.50 1.00 27.41 26.89 27.06 26.71 27.65
0.00 1.00 0.00 93.74 93.69 93.62 93.68 92.71
0.00 1.00 0.50 11.02 15.40 12.88 13.42 15.20
0.00 1.00 1.00 31.45 29.95 29.73 28.85 29.83
0.50 0.00 0.00 834.71 827.58 957.82 1014.73 1224.10
0.50 0.00 0.50 7.42° 4.06° 3.29° 3.07 421
0.50 0.00 1.00 37.29 36.08 36.04 35.37 36.39
0.50 0.50 0.00 30.46 30.48 30.37 30.40 29.85
0.50 0.50 0.50 7129 3.94 3.27 3.00° 4.15°
0.50 0.50 1.00 37.31 35.61 35.45 34.50 35.73
0.50 1.00 0.00 15.83 15.23 14.40 13.68 13.03
0.50 1.00 0.50 717 3.82° 324 2.94° 4.08°
0.50 1.00 1.00 38.02 36.20 36.00 34.98 36.26
1.00 0.00 0.00 0.17 0.13° 0.13’ 0.12° 0.20°
1.00 0.00 0.50 532 347 297 3.2r 3.59
1.00 0.00 1.00 43.35 41.85 41.75 40.94 42.04
1.00 0.50 0.00 1.or 1.94° 1.89° 1.88° 1.82
1.00 0.50 0.50 5.22’ 337 3.05° 3.17 3.60°
1.00 0.50 1.00 41.07 39.23 39.10 38.08 39.46
1.00 1.00 0.00 327 327 318 3.4 3.05°
1.00 1.00 0.50 5.1r 3.26° 3.13 3.12 3.60°
1.00 1.00 1.00 41.56 39.61 39.45 38.37 39.83

“and in bold: Non rejection values at the 5% significance level.

Starting with consumption (Table 3), and looking first at the non fractional cases, we observe
that there are only two non rejection values, corresponding to di= 1 and dz = ds = 0, and d; =
d2 =1 and d3 = 0, ie, a unit root at the long run (trend) or zero frequency, and two unit roots,
at zero and the seasonal component. However, we also observe several non rejection values
corresponding to fractional models. The set of these values for the d’s are: (0.5, 0, 0.5); (0.5, 05,
0.5); (05, 1, 05); (1, 0, 0.5); (1, 05, 0); (1, 05, 05) and (1, 1, 05). Thus, we see that the unit
root cycles always are rejected, and the root at the long run or zero frequency seems to be more
important than those corresponding to the seasonal or the cycles.
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<Table 4> Testing H, (2) in (7) with R given by (5) and white noise u; in the income series

Orders of integration Values of r

d d: ds T/20 T/21 T/22 T/23 T/24
0.00 0.00 0.00 3454123075 3362304599 3883134573 4062578719 4948868232
0.00 0.00 0.50 11.36 15.70 12.99 13.52 15.32
0.00 0.00 1.00 341.65 226.24 178.07 133.48 111.6
0.00 0.50 0.00 1967.26 1945.76 250.19 2380.03 2872.74
0.00 0.50 0.50 11.22 15.55 12.93 13.47 15.26
0.00 0.50 1.00 27.24 26.74 26.92 26.57 27.51
0.00 1.00 0.00 94.03 94.01 93.95 94.04 92.94
0.00 1.00 0.50 11.08 1541 12.88 1343 15.21
0.00 1.00 1.00 31.33 29.83 29.62 28.74 29.711
0.50 0.00 0.00 861.74 854.02 988.71 1047.51 1262.63
0.50 0.00 0.50 7.42° 4.07 3.29° 3.07 4217
0.50 0.00 1.00 38.34 37.21 37.17 36.54 37.49
0.50 0.50 0.00 30.75 30.78 30.67 30.71 30.10
0.50 0.50 0.50 730° 3.95° 3.26° 3.00° 4.15°
0.50 0.50 1.00 37.22 35.52 35.93 34.41 35.64
0.50 1.00 0.00 15.97 15.40 14.57 13.86 13.16
0.50 1.00 0.50 718 3.83° 3.23° 2.94 4.08°
0.50 1.00 1.00 37.94 36.12 3593 34.90 36.19
1.00 0.00 0.00 0.15° 0.11° o.1r 0.10° 017
1.00 0.00 0.50 532 347 298 3.2r 3.59°
1.00 0.00 1.00 45.09 43.67 43.57 42.81 43.84
1.00 0.50 0.00 1.88° 1.91° 1.86° 1.85° 1.78’
1.00 0.50 0.50 5.22° 337 3.06° 317 3.60°
1.00 0.50 1.00 41.01 39.17 39.04 38.03 39.40
1.00 1.00 0.00 3.23° 324 3.4 3.10° 3.or
1.00 1.00 0.50 512 3.26° 3.4 3.12 3.61°
1.00 1.00 1.00 41.51 39.56 39.41 38.33 39.78

‘ and in bold: Non rejection values at the 5% significance level.

Finally, we should remark that the results are quite robust to the different values of j. In fact,
the non-rejection values coincide in all cases. This it not at all surprising if we take into account
the similarity of the processes for different values of j when they are close to each other. The
results for y. are given in Table 4 and we observe that the non-rejection values coincide with
those reported in Table 3. Thus, the same conclusions as in the previous table hold here: the root
at the long run or zero frequency seems to be the most important one, though fractional orders
of integration, especially for the seasonal and for the cyclical components, may also be plausible
in some cases.
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<Table 5> Testing H, (2) in (7) with R given by (5) and AR(1) w in the consumption series

Orders of integration Values of r

d dz ds T/20 T21 T/22 T/23 T/24
0.00 0.00 0.00 7731124531 709827980 815666830 832193364 983585067
0.00 0.00 0.50 6.05’ 2.60° 58.74 8.26° 14.03
0.00 0.00 1.00 434.83 284.79 22248 163.28 136.11
0.00 0.50 0.00 160.76 148.62 164.81 . 166.50 185.88
0.00 0.50 0.50 5.82° 2.56’ 60.20 778 13.81
0.00 0.50 1.00 10.45 10.79 11.16 11.31 11.75
0.00 1.00 0.00 13.80 12.59 11.45 10.43 9.75°
0.00 1.00 0.50 5.61° 231 61.57 7.28’ 13.58
0.00 1.00 1.00 14.67 14.19 14.11 13.77 14.11
0.50 0.00 0.00 47.12 46.46 47.48 4795 46.64
0.50 0.00 0.50 787 8.80° 70.33 35.28 33.05
0.50 0.00 1.00 21.15 20.53 20.59 20.21 20.97
0.50 0.50 0.00 143.67 139.94 135.78 131.41 132.51
0.50 0.50 0.50 7.54° 8.53 75.14 35.87 34.37
0.50 0.50 1.00 24.03 22.98 22.83 22.19 2291
0.50 1.00 0.00 157.92 152,27 150.73 146.22 143.59
0.50 1.00 0.50 7.20° 8.24° 80.18 36.36 35.68
0.50 1.00 1.00 26.45 25.16 24.88 24.10 24.81
1.00 0.00 0.00 6.06° 5.2r 5.18 473’ 5.52
1.00 0.00 0.50 21.48 33.24 31.34 47.68 29.28
1.00 0.00 1.00 28.81 27.54 27.42 26.68 27.66
1.00 0.50 0.00 3.2y 3.1%° 3.1 3.17 3.33%
1.00 0.50 0.50 2175 34.47 34.63 51.41 31.82
1.00 0.50 1.00 33.06 31.49 31.28 30.37 31.44
1.00 1.00 0.00 5.05° 5.02° 5.05° 5.05° 517
1.00 1.00 0.50 21.98 35.71 38.28 55.30 34.57
1.00 1.00 1.00 36.27 34.46 34.19 33.15 34.28

3

and in bold: Non rejection values at the 5% significance level.

The significance of the above results may be in large part due to the un accounted for I1(0)
autocorrelation in w. Thus, in the following two tables we allow for an AR(1) structure on the
disturbances. Higher AR orders were also considered and the results were very similar to those
reported here for the AR(1) case, implying that this specification could be sufficient for describing
the short-run dynamics underlying the series. (Finite sample critical values were also computed
for the case of AR(1) u, and though not reported in the paper, they were employed in Tables 5
and 6).
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<Table 6> Testing Ho (2) in (7) with R given by (5) and AR(1) u; in the income series

Orders of integration Values of r

d d2 ds T/20 T/21 T/22 T/23 T/24
0.00 0.00 0.00 7356550689 7119024736 8195288956 8557125904 10203242215
0.00 0.00 0.50 6.05° 2.61° 58.59 8.19° 13.96
0.00 0.00 1.00 439.56 287.70 224.70 164.78 137.36
0.00 0.50 0.00 167.74 155.29 172.42 174.37 194.87
0.00 0.50 0.50 5.82° 2.56 60.03 7.70° 13.75
0.00 0.50 1.00 10.38 10.72 11.09 11.25 11.67
0.00 1.00 0.00 13.50 12.32 1.20° 10.19 9.50°
0.00 1.00 0.50 5.61° 2.54° 61.39 7.21° 13.51
0.00 1.00 1.00 14.54 14.07 13.99 13.66 14.00
0.50 0.00 0.00 45.45 44.89 45.94 4.46° 45.26
0.50 0.00 0.50 7.83° 8.72 70.51 35.16 33.05
0.50 0.00 1.00 20.96 20.36 20.42 20.04 20.79
0.50 0.50 0.00 138.35 134.50 130.24 125.79 126.64
0.50 0.50 0.50 7.50° 8.45° 7532 35.74 34.35
0.50 0.50 1.00 23.87 22.83 22.68 22.05 22.76
0.50 1.00 0.00 159.95 154.68 153.32 149.12 146.25
0.50 1.00 0.50 717 8.16’ 80.35 36.22 35.66
0.50 1.00 1.00 26.27 2499 24.72 23.94 24.65
1.00 0.00 0.00 37.59 33.34 32.57 30.16 32.48
1.00 0.00 0.50 21.43 33.12 31.56 47.76 29.41
1.00 0.00 1.00 28.60 27.34 27.22 26.49 27.47
1.00 0.50 0.00 344 3.36 3.40° 3.38° 3.57
1.00 0.50 0.50 21.68 34.35 34.86 51.48 31.96
1.00 0.50 1.00 32.90 31.33 31.13 30.22 31.28
1.00 1.00 0.00 5.16’ 512 5.16’ 5.26’ 5.29°
1.00 1.00 0.50 2191 35.56 38.53 55.37 347
1.00 1.00 1.00 36.10 34.31 34.03 33.00 34.12

é

Table 5 displays the results for consumption. Imposing r = T/20 or T/21, we observe several
non rejection values, some of them corresponding to di

and in bold: Non rejection values at the 5% significance level.

0. However, in these cases, though it

is not reported in the tables, the estimated AR coefficients were very close to 1, implying that
they might be competing with di in describing the nonstationary component of the trend. (These
coefficients are Yule-Walker estimates, entailing roots that are automatically less than one in
absolute value but that can be arbitrarily close to one). Apart from these cases, we also observe
another six non rejection values: two of them corresponding to the unit roots at zero and at
zero and the seasonal frequencies, and the remaining four corresponding to fractional models with
(di, dp, d3) = (05 0, 0); (05 05 05) (05 1, 05) and (1, 05, 0). All these models were
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non-rejected in Table 3 for the case of white noise disturbances. Imposing r = T/22, we only
observe three non rejected cases: (1, 0, 0); (1, 05, 0) and (1, 1, 0), and they are non rejected
with r = T/23 and T/24 along with several other cases with di = 0.

In Table 6 we report the results for y.. When r = T/20 or T/21, the non rejection values
coincide with those given in Table 5 and, for the remaining cases, some small differences appear.
Thus, if r = T/22 and d = (0, 1, 0), Hy (2) cannot be rejected for y:, though it was rejected for
ct. On the other hand, if r = T/23 or T/24 and d = (1, 0, 0), H, cannot be rejected for c; but it is
now rejected for y. Apart from these cases, all the remaining non rejection values coincide for
the two series and also with the case of white noise disturbances, implying that the results are
quite robust across r and also across the different types of disturbances.

5. Conclusions

We have presented a procedure for testing I(d) statistical models in the trend, the seasonal and
the cyclical components in raw time series. The tests, due to Robinson (1994), have standard null
and local limit distributions, and several Monte Carlo experiments conducted across the paper
show that the sizes of the tests based on the asymptotic critical values are too large. Thus, finite
sample critical values were computed and the rejection frequencies against unit and fractional
alternatives were relatively high in all cases.

The tests were applied to the quarterly, seasonally unadjusted, UK consumption and income
series, the results showing the importance of the roots corresponding to the trend and the
seasonal components. However, though the unit roots were found to be fairly suitable, we show
that fractional models (including the cyclical component) may also be plausible alternatives in
some cases.

This article can be extended in several directions. Thus, for example, the finite sample critical
values obtained in Section 3 can be extended to the case of non normal disturbances. Also, it
would be worthwhile proceeding to get point estimates of the fractional differencing parameters.
For the cyclical part, some attempts have been made by Arteche and Robinson (2000) and
Arteche (2002). However, not only would this be computationally more expensive, but it is then
in any case confidence intervals rather than point estimates which should be stressed, while
available rules of inference seem to require preliminary integer differencing to achieve stationarity
at each of these components. The approach used in this article generates simply computed
diagnostics for departures from real values of d and thus, it is not at all surprising that when
fractionally hypotheses are entertained, several non rejection values may appear. In that respect,
a model selection criterion, (based on diagnostic tests on the residuals), should be established in
order to determmine which might be the best model specification for these and other
macroeconomic time series. Finally, in relation with the cyclical component, it might also be of
interest to compare the performance of the fractional model presented in this paper with the more
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traditional approaches based on ARIMA (or even ARFIMA) models. Work in these directions is
now under progress.
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