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Spatial Correlations of Brain fMRI data

Kyungmee, Choil)

Abstract

In this study we suggest that the spatial correlation structure of the brain fMRI
data be used to characterize the functional connectivity of the brain. For some
concussion and recovery data, we examine how the correlation structure changes from
one step to another in the data analyses, which will allow us to see the effect of
each analysis to the spatial correlation or the functional connectivity of the brain.
This will lead us to spot the processes which cause significant changes in the spatial
correlation structure of the brain. We discuss whether or not we can decompose
correlation matrices in terms of its causes of variations in the data.
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1. Introduction

The brain functional Magnetic Resonance Imaging (fMRI) data and geological data share
some similar properties because both are depicted in the space and data at different locations
are often spatially correlated. On the other hand, they are also quite different because of their
distinctive correlation structures. To be more specific, let us call a voxel the unit of the data
at a location. When a voxel in the brain is functionally active, voxels in its neighbor tend to
be active too. This implies that the voxels in close proximity are highly correlated. In
addition, some voxels far apart can be active at the same time, which implies that
significantly active voxels tend to form clusters regardless of their distances.

In this study we explore the correlation structure of the brain fMRI data at each data
analysis step to characterize the functional connectivity of the brain. Also we examine how
the correlation structures change from one step to another step during the data analyses, so
that we can see how each analysis affects the correlation structure or the  functional
connectivity of the brain. This will lead us to spot any processes which cause significant
changes in the correlation structure of the brain, and finally map the functional connectivity of
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the brain. Also we will discuss whether or not we can decompose correlation matrices in
terms of its causes of variations in the data.
Recently, Logan and Rowe (2004) tried to model the spatial correlation of the brain. They

adbpted the simplest spatial correlation model Rp)=p ¢ for 0<p<1, and compared the real
correlation matrix and the theoretical one by pictures. However this theoretical model
considered only the proximity correlations without being able to fit the high correlations
between voxels in remote locations. Also this model ignored the negative correlations even
though there are loads of voxels negatively correlated. Bowman(2004) instead formed clusters
of brain voxels based on the conventional clustering algorithms using correlates of rCBF
(regional Cerebral Blood Flow) with PET(Positron Emission Tomography) and fMRI data.
Those clusters revealed the brain anatomy and its functional connectivity quite well even
though the spatial correlation itself was not used or modeled.

Section 2 will define a spatial correlation matrix for the brain fMRI data and will present
the visual image of spatial correlation matrix for a piece of real data. Section 3 adopts an
analog of Visual Analysis of Variance (Eddy and McNamee, 2001) to examine whether the
correlation or the covariance of the fMRI data can be decomposed orthogonally in terms of
its data processing steps.

II. Visualization of Spatial Correlation

Before define the spatial correlation matrix for the brain fMRI data, let us take a look at
the data structure. All subjects used in this study were concussed and then recovered. Their
Brain fMRI was taken while they were performing the given task which is called nBack. The
observations were sampled in the reverse spiral format in k-space or Fourier space. Then
they were interpolated to construct a 64x64 matrix, which later on was inverse Fourier
transformed into i-space or image space. Meanwhile, their physiological data were collected :
Blood Oxygen Level and respiration signal along the fMRI data in k-space. The task variable
nBack has three experimental levels : Oback, lback and 2back. Each of them was repeated 4
times in the random order. For each condition, there are 34 replications along with the time to
result in a set of gigantic temporal data. Fig. 1 shows 34 replications of one slice for a
condition.

To perform the task, the subject is watching the screen inside the MRI machine, and on the
screen a series of letters are coming out. Whenever the target letter comes out, the subject is
supposed to press the button with his or her index finger to mean "Yes, it’s a target letter”.
Otherwise he or she press the other button with his or her middle finger. Those buttons are
fixed with bandage into his or her fingers beforehand. For OBack the target letter is ''x”, for
1Back the target letter is the one which repeats the previous one without skipping, and for
2Back the target letter is the one which repeats after one skip.
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Let V be the pgxr data matrix, where p and g are the numbers of rows and columns on a

slice and 7 is the length of the time series at each location. In our study both p and g are
64. To measure a spatial correlation the sample correlation matrix R is adopted, and

R=VVT Since pq is usually much greater than the time points 7z, often R is not full rank.
More precisely, the sample correlation coefficient of two time
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Fig. 1 34 images of brain fMRI data
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series data v (4, and v (y ,) at two different locations (x,¥) and (x’,y’) in i-space is

defined as follows:

R _ Cov (v (; ),V (5.3))
Y sy ¥ (x5 \/7 Var(v (x,y)) Var(v (x',y’)) :

To illustrate the spatial correlation, let us use a small piece data, which is a6 X6 matrix.

For p=6 and ¢=26, the following Fig. 2 is a 6x6 matrix of brain voxels which does not
include air. In this figure white means weak signal or weak functional activity, and black
means strong signal or strong functional activity.

Fig 2. 6x6 matrix of brain voxels

Then Fig. 3 is the corresponding 36x36 correlation matrix K of the 6 X6 brain matrix.
The first row of the correlation matrix is the correlation coefficients between the voxel (1, 1)
and the others. The eighth row of the correlation matrix is the correlation coefficients between
the voxel (2, 2) and the others. Every six columns of the correlation matrix in Fig. 3, strong
correlation shows up and fades out. This explains the correlation between rows of the brain
voxels and reveals the stripes along the diagonal. Also every six rows of the correlation
matrix in Fig. 3, another strong correlation shows up and fades out. This explains the
correlation between columns of the brain voxels and constructs the mosaic of 6x6 squares. It
is very interesting to notice that even a small piece of the brain can create the beautiful

sp_atial pattern like in Fig. 3. It seems that the spatial correlation model f (p) = pd for
0 < p <1 might fit locally this pattern.
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Fig. 3. 36x36 of correlation matrix

However if both p=64 and ¢=164 are considered, then R is exploded into a gigantic matrix

4096x4096 which contains about half a million numbers in it. This correlation structure is no
longer simple enough to fit a single specific function, and illustrating a full correlation matrix
requires 3 giga bytes. Therefore it is worthy to decompose the correlation matrix to find out
its causes instead, and fit a linear model like analysis of variance.

III. Visual Analysis of Spatial Correlation

Lazar, Genovese, Eddy, and Welling (2001) triggered the idea of visually decomposing the
variance in the brain fMRI data as an analog of analysis of variance. Then McNamee and
Eddy (2001) further developed it and named it as visual analysis of variance, which assesses
statistical changes in data at each data processing step. It  provides quantitative and visual
information at each processing step, so that it helps determine which data processing step
contributes more to the variation in the data.

Decomposing the correlation matrix by its causes is an analog of the analysis of variance.
There are two different sources of causes. One is caused by the task-related experimental
design such as Subject, Concussion or Recovery, nBack, and the other is caused by the
mechanical design. The usual mechanical design factors are often considered as nuisance
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variables, so that they are analysed and removed before the main analysis related to the task.

For analysis FIASCO (Functional Image Analysis Software Computational Olio), the locally
developed software at Carnegie-Mellon University, provides some data preprocessing analyses
which are Despike, Physiological correction, Mean correction, 2D Motion correction, Outlier
removal, Spatial filtering. For Physiological correction it uses the algorithm developed by
McNamee and Eddy(2004). Despike removes outliers or spikes in Fourier space, Physiological
correction regresses out the heart beat effect from the data in Fourier space, Mean correction
standardize the whole data over the time, Motion correction corrects and relocates images
using the structural images of the brain, Qutlier removal removes outliers in image space, and
Spatial filtering smoothes the images using Gaussian filter. In this paper we consider the data
prepocessing steps as causes of mechanical design, and we will examine the spatial correlation
matrices before and after each preprocessing data analysis.

Each data preprocessing analysis involves gigantic amount of data, so that it often fills up
the huge memory space instantly and it takes long time to run through the whole processes.
For instance running one step of analysis often requires more than 20 giga bytes. As
mentioned earlier, the picture of full correlation matrix is too large to be included here, we
instead depict 256 X 256 correlation matrix in Fig. 4 which was obtained from 16x16 brain
voxels at each preprocessing data analysis. Red means strong positive signal or functional
activity, and blue means strong negative signal or functional activity. .

There are big changes right after Physiological correction and Spatial filtering. Definitely the
spatial correlation has increased enormously by revealing certain patterns in the correlation
matrices. One possible explanation for this phenomena is the inverse Fourier transformation
after the Physiological correction in the Fourier Space often introduces some spatial correlation
to the data instead of removing them. Also note that Physiological correction was designed
and preformed not to reduce the spatial correlation in the data, but to reduce the variation in
the data caused by heart beat. On the other hand, the increase of spatial correlation right
after Spatial filtering has revealed as was expected. So Spatial filtering has the effect of
emphasizing the pattern of the correlation matrix. Since the most data analyses related to the
task variable assume that voxels are spatially independent, a series. of resultant figures of
spatial correlation give a warning that the further analysis should consider the spatial
correlation, and from the data collection step to the end of analyses the correlation figures will
be an excellent barometer whether spatial correlation has been reduced.

In Fig. 4, we can see the regular pattern in all the correlation matrices. Moreover the blue
and red patterns are alternating and showing how the voxels are functionally connected each
other. If the correlation is represented as red, the corresponding voxels have positive
functional connectivity. Otherwise they have negative functional connectivity. If colors are
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darker, there are stronger connectivities. A line along the principal diagonal means the
correlation coefficient 1 with itself.

&%

Fig. 4. Spatial Correlation Matrix : The Initial Data, After Despike, After Physiological
correction, After Mean correction, After 2D Motion correction, After Outlier removal, After
Spatial filtering
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In addition to a series of correlation pictures, a summary statistic would help understand the
change in correlations from step to step. Table 1 and Table 2 quantify the whole 4096x4096
correlation matrices of 3 Concussion and Recovery data by taking the sum of all correlation
coefficients at each data preprocessing step. The reason of using the sum of all correlation
coefficients is that this statistic would somehow help understand the total amount of
correlations at each step. The theoretical maximum is 40962, and the theoretical minimum is 0
when there is no correlation at all between voxels. However this statistic still does not
explain enough how the positive and negative correlations have increased or decreased. So in
the future study the separate summary statistics should be developed and provided to explain
positive and negative correlation coefficients.

Fig. 5 and Fig. 6 depicted the total correlations of Table 1 and Table 2. In both Fig. 5 and
6, we can see that the total correlation has notably increased after both Physiological
correction and Spatial filtering. This result coincides with a series of correlation in Fig. 4.
However one more thing to notice here is the difference between concussion data and
recovery data. While concussion data shows sudden changes after Physiological correction and
Filtering, recovery data shows more stable changes. This might be explained by the fact that
the concussed brain would require more activity to earn the similar performance compared to
the recovered brain. In Fig. 5, one concussion data has been corrupted after Despike, so it
shows a big jump after Despike and a big drop after a physiological correction. Also two
graphs cross after Despike and before Physiological corrections, which would imply that those
two could be confounded. This phenomenon does not occur consistently in the other subjects.
Thus as long as there is no confoundedness between Despike and Physiological correction, in
view of spatial correlation we can assume that the given data analysis steps are independent
and they can be represented as the linear model.
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Fig. 5. Sum of absolute values of correlation coefficients
after each data analysis step : Concussion
Vertical axis is for sum, and horizontal Axis is for Analyses.
The Upper most line is subject 1, the middle line is subject 2,
and the bottom most line is subject 3

Data . . .
. subject 1 subject 2 subject 3
Processing

Initial 496986 589528 535451
Despike 549319 2342976 510373
Physiological 634517 1614893 1288098
Mean 642476 1848489 1287986
Motion 635599 1589015 1281921
Outlier 635382 1498698 1281949
Task 1103930 2875956 2519758

Table 1. Sum of absolute values of correlation coefficients : Concussion
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Fig. 6. Sums of absolute values of correlation coefficients
after each data analysis step : Concussion
Vertical axis is for sum, and horizontal Axis is for Analyses.
The Upper most line is subject 1, the middle line is subject 2,
and the bottom most line is subject 3

Data Processing subject 1 subject 2 subject 3
Initial 615989 666770 753221
Despike 618857 667157 974525
Physiological 710046 1157271 967328
Mean 716956 1150431 974936
Motion 716311 1170017 1022896
Outlier 716580 1170143 1022832
Filter 1586560 2244734 1964733

Table 2. Sum of absolute values of correlation coefficients : Recovery
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Summary statistic and its graph are often necessary and they provide an useful additional
information about the spatial correlations through the analyses. Therefore from the data
collection step to the end of analyses this summary statistic can be used as another excellent
barometer to decide whether there has been an increase or decrease of correlations.

IV. Conclusion

The functional connectivity of the human brain is very complicated, and so there have been
lots of approaches to reveal it. For this purpose, we visualized and examined the spatial
correlation matrix of the brain. From each correlation matrix, we could see how the voxels
are functionally connected. It is obvious that each process reveals more negative correlations.

Also we found out that Physiological correction and Spatial filtering adds more spatial
correlations to the data, so that more caution is needed at these steps. However after the
motion correction the spatial correlation has not been removed as much as we expected from
the data. Also Despike and Physiological correction were sometimes confounded. It means that
removing spikes in Fourier space often introduces the strong pattern of the spatial correlation
in the image space and Physiological correction removes some. Sometimes Despike reduces the
spatial pattern and then Physiological correction increases it.

Ignoring the confoundedness between Despkie and Physiological correction, we can assume
that all the given data processing analysis are independent. Let us those effects have been
removed. Since the task variables are independent from the data preprocessing analyses and
they are independent each other, the total covariance between voxels can be represented as an
analog of Analysis of Variance:

Total Covariane = Z} a ;k%Covariane S, CR, nBack, up+ Unexplained part
noac

where S is subject, CE is Concussion or Recovery, and nBack is the task variable, and MD
is the mechanical design factors. This means that the total covariance can be decomposed into
independent effects. Therefore except for the confounded Despike and Physiological correction,
we can assume the independence among preprocessing data analyses.

There are another way of decomposing the correlation matrix, that is using Singular Value
Decomposition (SVD). SVD of the correlation matrix follows right away from mathematics.
The correlation matrix R is then expressed as a weighted sum of products of orthogonal
matrices. Then we can also obtain the un-correlated data from the previous SVD result.
Interestingly, the un-correlated data can be expressed as the sum of product of both
orthogonal image and orthogonal temporal series. However the equality does not hold because
the eigenvectors and eigenvalues of R are not unique. Yet, we still can have a good
approximation. This decomposition always provides orthogonality.

As a future study, more useful summary statistics should be developed to quantify the
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results in pictures. Also more concussion and recovery data will be included and analyzed to
confirm the results in this study.
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