Synthesis and Properties of Novel Flame Retardant Poly(butylene terephthalate)

  • Park Jong Min (School of Applied Chemistry and Chemical Engineering, Sungkyunkwan University, KOLON Central Research Park) ;
  • Park Yun Heum (School of Applied Chemistry and Chemical Engineering, Sungkyunkwan University, Hyperstructured Organic Research Center)
  • Published : 2005.04.01

Abstract

The phosphorus comonomer [(6-oxido-6H-dibenz<1,2>oxaphosphorin-6-yl)methyl]-methyl butane-dioate (DOP-MBDA) was synthesized through the addition reaction of dimethyl itaconate (DMI) with 9,10-dihydro­9-oxa-10-phosphaphenan threne-10-oxide (DOP). A series of novel flame retardant poly(butylene terephthalate)s (PBTs) containing different amounts of phosphorus were prepared using DOP-MBDA as a comonomer. These novel polymers were characterized by $^{1}H-NMR$, IR, and differential scanning calorimetry (DSC). The novel phosphorus­containing poly(butylene terephthalate)s, referred to as FR-PBTs, exhibited interesting thermal and mechanical behavior, as well as superior flame retardancy. These properties are attributed to the effect of incorporating the rigid structure of DOP-MBDA and the pendant phosphorus group into the poly(butylene terephthalate) (PBT) homopolymer. The UL 94-V2 rating could be achieved with this novel flame retardant PBT, which has a phosphorus content as low as $0.5 wt\%$, and the FR-PBTs emitted less fumes and toxic gases than the PBT homopolymer.

Keywords

References

  1. A. G. Hoechst, US Patent, 3.941.752 (1992)
  2. A. G. Hoechst, US Patent, 4.033.936 (1977)
  3. Toyobo Co. Ltd., Germany Patent, 2.646.218 (1977)
  4. C. S. Wang, J. Y. Shieh, and Y. M. Sun, Eur. Polym. J., 35, 1465 (1999)
  5. S. J. Chang, Y. C. Sheen, R. S. Chang, and F. C. Chang, Polym. Degrad Stab., 54, 365 (1996) https://doi.org/10.1016/S0141-3910(96)00064-X
  6. D. Derouet, F. Morvan, and C. Brosse, J. Appl. Polym. Sci., 62, 1855 (1996) https://doi.org/10.1002/(SICI)1097-4628(19961212)62:11<1855::AID-APP10>3.0.CO;2-Y
  7. S. Maiti, S. Banerjee, and S. K. Palit, Prog. Polym. Sci., 18, 227 (1993) https://doi.org/10.1016/0079-6700(93)90026-9
  8. J. Y. Kim, E. S. Seo, S. H. Kim, and T. Kikutani, Macromol. Res., 11, 62 (2003) https://doi.org/10.1007/BF03218279
  9. S. V. Levchik, G F. Levchik, A. I. Balabanovich, E. D. Weil, and M. Klatt, Angew. Makromol. Chem., 264, 48 (1998) https://doi.org/10.1002/(SICI)1522-9505(19990201)264:1<48::AID-APMC48>3.0.CO;2-W
  10. G. F. Levchik, Y. V. Grigoriev, A. I. Balabanovich, S. V. Levchik, and M. Klatt, Polym. Int., 49, 1095 (2000) https://doi.org/10.1002/1097-0126(200010)49:10<1095::AID-PI405>3.0.CO;2-B
  11. LG Chemicals. KP Patent, 0231063 (1999)
  12. J. Yu, D. Zhou, W. Chai, B. Lee, S. W. Lee, J. Yoon, and M. Rhee, Macromol. Res., 11, 25 (2003) https://doi.org/10.1007/BF03218274
  13. W. Aufmuth, S. V. Levchik, G. F. Levchik, and M. Klatt, Fire Mater., 23, 1 (1999) https://doi.org/10.1002/(SICI)1099-1018(199901/02)23:1<1::AID-FAM660>3.0.CO;2-K
  14. G. L. Nelson, Fire and Polymers: Materials and Tests for Hazard Prevention, ACS, Washington D. C., 1995
  15. W. C. Kuryla and A. J. Papa, Flame Retardancy of Polymeric Materials, Marcel Dekker, New York, 1975, vol. 3