Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis

PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조

  • Jung, Yun-Kyo (Dep. of Chemical Engineering, Myongji Univ.) ;
  • Lee, Hyuck-Jae (Dep. of Chemical Engineering, Myongji Univ.) ;
  • Jang, In-Young (Dep. of Chemical Engineering, Myongji Univ.) ;
  • Hwang, Gab-Jin (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Bae, Ki-Kwang (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Sim, Kyu-Sung (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kang, An-Soo (Dep. of Chemical Engineering, Myongji Univ.)
  • 정윤교 (명지대학교 화학공학과) ;
  • 이혁재 (명지대학교 화학공학과) ;
  • 장인영 (명지대학교 화학공학과) ;
  • 황갑진 (한국에너지기술연구원 수소에너지연구센터) ;
  • 배기광 (한국에너지기술연구원 수소에너지연구센터) ;
  • 심규성 (한국에너지기술연구원 수소에너지연구센터) ;
  • 강안수 (명지대학교 화학공학과)
  • Published : 2005.06.15

Abstract

Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

Keywords

References

  1. J. Larminie and A. Dicks : 'Fuel cell system explained'; John Wiley & Sons, Ltd: New York, 2000
  2. D. G. Baird, J. Huang, and J. E. McGrath: 'Polymer electrolyte membrane fuel cell', Plastic Eng., Vol. 59, 2003, p. 46
  3. P. Zschocke and D. Quellmalz : 'Novel ion exchange membrane based on an aromatic polyethersulfone', J. Memb. Sci., Vol. 22, 1985, p. 325 https://doi.org/10.1016/S0376-7388(00)81290-9
  4. J. M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, and N. Ogata : 'Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells', Solid State lonics, Vol. 147, 2002, p. 189 https://doi.org/10.1016/S0167-2738(02)00011-5
  5. K. Miyatake, H. Zhou, and M. Watanabe : 'Proton conductive polyimide electrolytes containing fluorenyl groups: synthesis, properties and branching effect', Macromolecules, Vol. 37, 2004, p. 4956 https://doi.org/10.1021/ma0495487
  6. C. Genies, R. Mercier, B. Sillion, N. Comet, G. Gebel, and M. Pineri 'Soluble sulfonated naphthalenic polyimides as materials for proton exchange membrane', Polymer, Vol. 42, 2002, p. 359 https://doi.org/10.1016/S0032-3861(00)00384-0
  7. X. Glipa, M. E. Haddad, D. J. Jones, and J. Roziere : 'Synthesis and characterisation of sulfoned polybenzimidazole a highly conducting proton exchange polymer', Solid State lon, Vol. 97, 1997, p. 323 https://doi.org/10.1016/S0167-2738(97)00032-5
  8. J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. Litt: 'Acid-Doped Polybenzimidazoles : A New Polymer Electrolyte', J. Electrochem. Soc., Vol. 142, 1995, p. L121 https://doi.org/10.1149/1.2044337
  9. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine : 'Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes', J. Memb. Sci. Vol. 229, 2004, p. 95 https://doi.org/10.1016/j.memsci.2003.09.019
  10. S. I. Jung, C. H. Ryo, A. S. Kang, and H. S. Lee : 'Manufacture and Current/Voltage Characteristics of Bipolar Membrane with Polysulfone', J. Korea. Ind. Eng. Chem. Vol. 14(1), 2004, p. 95
  11. M. Mulder : 'Basic principles of membrane technology', Kluwer academ. publishers, Boston, 1996
  12. H. B. Park, and Y. M. Lee : 'Polymer electrolyte membrane for fuel cell', J. Korea Ind. Eng. Chem., Vol. 13, No.1, 2002, p. 1
  13. T. A. Zawodzinski Jr., T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld : 'Water uptake by and transport through nation 117 membranes', Vol. 140, 1993, p. 1041 https://doi.org/10.1149/1.2056194
  14. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath : 'Fabrication and characterization of heteropolyacid/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications', J. Memb. Sci., Vol. 212, 2003, p. 263 https://doi.org/10.1016/S0376-7388(02)00507-0
  15. P. C. Pieke and N. E. Vanderborgh : 'Temperature dependence of water content and proton conductivity in polyperfluorosulfonic acid membranes', J. Membr. Sci., Vol. 32, 1987, p. 31l https://doi.org/10.1016/S0376-7388(00)81572-0
  16. NAFION Product Bulletin, DuPont Company, www.Dupont.com
  17. P. Genova-Dimitrova, B. Baradie. , D. Foscallo, C. Poinsignon, and J.Y. Sanchez : 'Ionomeric membranes for proton exchange membrane fuel cell: sulfonated polysulfone associated with phosphatoantimonic acid', J. Memb. Sci. Vol. 185, 2001, p. 59 https://doi.org/10.1016/S0376-7388(00)00634-7