Histological response of anodized titanium implant

양극 산화한 티타늄 임프란트의 조직학적 반응

  • Lim, Svetlana (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Heo, Seong-Joo (Department of Prosthodontics, College of Dentistry, Seoul National University) ;
  • Han, Chong-Hyun (Department of Prosthodontics, Yonsei University, Yongdong Severance Hospital) ;
  • Kim, Tae-II (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Seo, Yang-Jo (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Ku, Young (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Chung, Kyoung-Uk (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Chung, Chong-Pyoung (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Han, Soo-Boo (Department of Periodontology, College of Dentistry, Seoul National University) ;
  • Rhyu, In-Chul (Department of Periodontology, College of Dentistry, Seoul National University)
  • 임스베틀라나 (서울대학교 치과대학 치주과학교실) ;
  • 허성주 (서울대학교 치과대학 치과보철학교실) ;
  • 한종현 (연세대학교 영동세브란스 병원) ;
  • 김태일 (서울대학교 치과대학 치주과학교실) ;
  • 설양조 (서울대학교 치과대학 치주과학교실) ;
  • 구영 (서울대학교 치과대학 치주과학교실) ;
  • 정경욱 (서울대학교 치과대학 치주과학교실) ;
  • 정종평 (서울대학교 치과대학 치주과학교실) ;
  • 한수부 (서울대학교 치과대학 치주과학교실) ;
  • 류인철 (서울대학교 치과대학 치주과학교실)
  • Published : 2005.09.30

Abstract

여러 연구들을 통해 많은 학자들이 임프란트 안정성(stability)은 표면의 특징에 달려있다고 생각하게 되었다. 표면의 구조, 에너지, 산화물(oxide) 두께와 표면성상(topography)등 임프란트의 표면의 특징은 임프란트와 골조직의 반응에서 중요한 역할을 하는 것이 알려짐에 따라 티타뮨 임프란트의 표면의 처리 방법에 큰 관심을 가지게 되었다. 그 중에서 티타늄 임프란트 표면의 산화피막화(anodization)가 한 방법으로 대두되었다. 이 방법은 전기화학적 방식으로 임프란트 표면에 거칠고(rough)두꺼우며(thick), 기공(pore)을 가지는 산화물 막을 형성하는 것으로 산화물의 두께는 coronal 부분(l-2 ${\mu}m$)으로부터 apical부분(7-10 ${\mu}m$)까지 증가하게 된다. 산화피막의 표면에는 다양한 크기의 수많은 기공이 주로 1-2 ${\mu}m$ 두께로 임프란트의 apical 부분에서 존재하며, 임프란트 표면의 거칠기는 conical 위부분에서 apical 부분까지 계속 증가한다(평균 Ra value=1.2 ${\mu}m$). 또 다른 표면 처리 방법으로는 blasting 후에 etching을 한 SLA 표면이 있다. 이 연구의 목적은 일반적으로 많이 이용되고 있는 anodized 표면과 SLA 표면의 조직학적 반응을 비교 분석하는 것이다. 24개 임프란트를(anodized surfaced implant-12개 , SLA-12개, 8mm ${\times}\;{\Phi}$ 4.3) 6마리 토끼의 오른쪽과 왼쪽 femur에 식립하였다. 12주후에 동물들을 희생하여 EXACT cutting-grinding system을 이용하여 샘플을 절단하고 800, 1200 및 4000 번 연마제(abrasive) paper로 20-50 ${\mu}m$ 까지 grinding하였다. 샘플은 Multiple staining 용액으로 염색하여 SLA 임프란트 군과 비교하였다. 골과 임프란트 사이에 연결을 TDI 프로그램을 이용하여 %로 측정하였다. SLA 임프란트 군 경우에는 골과 임프란트 사이의 연결이 $74{\pm}19%$ 이고, 양극 산화한 임프란트 군 경우에는 $77{\pm}9%$이었다. 양극 산화한 티타늄 임프란트의 골 접촉률이 SLA 표면 임프란트 경우과 통계학적으로 유의한 차이는 보이지 않았다.

Keywords

References

  1. Li DH, Liu BL, Zou JC, Xu KW. Improvement of osseointegration of titanium dental implants by a modified sandblasting surface treatment: An in vivo interfacial biomechanics study. Implant Dent 1999:8: 289-294 https://doi.org/10.1097/00008505-199903000-00014
  2. Sykaras N, Lacopino AM, Marker VA. Triplett RG, Woody RD. Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Maxillofac Implants 2000; 15: 675-690
  3. Letic-Gavrilovic A. Scandurra R. Abe K. Genetic potential of interfacial guided osteogenesis in implant devices. Dental Materials Journal. 2000: 19(2): 99-132 https://doi.org/10.4012/dmj.19.99
  4. Giavaresi G, Fini M. Cigada A. Chiesa R. Rondelli G, Rimondini L, Torricelli P, Aldini NN, Giardino R. Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 2003: 24: 1583-1594 https://doi.org/10.1016/S0142-9612(02)00548-3
  5. Davies JE. Machanisms of endosseous integtation. Int J Prosthodont 1998: 11: 391-401
  6. Parr GR. Gardner LK, Toth RW. Titanium: The mystery metal of implant dentistry. Dental materials aspects. The journal of prosthetic dentistry. 1985:54(3): 410-414 https://doi.org/10.1016/0022-3913(85)90562-1
  7. Larsson C. Thomsen P, Aronsson BO, Rodahl M, Lausmaa J, Kasemo B, Ericson LE. Bone response to surface-modified titanium response to machined and electropolished implants with different oxide thicknesses. Biomaterials 1996: 17(6): 605-615 https://doi.org/10.1016/0142-9612(96)88711-4
  8. Moberg LE. Kondell PA. Sagulin GB, Bolin A. Heimdahl A. Gynther GW. Branemark System and ITI Dental Implant System for treatment of mandibular edentulism. Clin Oral Impl Res. 2001: 12: 450-461. https://doi.org/10.1034/j.1600-0501.2001.120504.x
  9. Klokkevold PR. Nishimura RD, Adachi M, Caputo A. Osseointegration enhanced by chemical etching of the titanium surface. Clin Oral Impl Res 1997: 8: 442-447 https://doi.org/10.1034/j.1600-0501.1997.080601.x
  10. Gotfredsen K, Berglundh T, Linghe J. Anchorage of titanium implants with different surface characteristics: An experimental study in rabbits. Clin Impl Dent and Relat Res 2000; 2(3): 120-128 https://doi.org/10.1111/j.1708-8208.2000.tb00002.x
  11. Onur MA. Cehreli MC, Tas Z, Sahin S. Effect of machined/turned, $TiO_2$ -blasted and sandblasted/acid-etched titanium oral implant surfaces on nerve conduction: A study on isolated rat sciatic nerves. J Biomed Mater Res 2003: Part B: Appl Biomater 67B: 772-778 https://doi.org/10.1002/jbm.b.10064
  12. Cochran DL, Schenk RK, Lussi A Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. J Biomed Mater Res 1998: 40: 1-11 https://doi.org/10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
  13. Li D. Ferguson SJ, Beutler T, Cochran DL, Sittig C, Hirt HP, Buser D. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J Biomed Mater Res. 2002; 60: 325-332 https://doi.org/10.1002/jbm.10063
  14. Ivanoff CJ, Hallgren C, Widmark G, Sennerby L, Wennerberg A. Histologic evaluation of the bone integration of $TiO_2$ blasted and turned titanium micro-implants in humans. Clin Oral Impl Res. 2001: 12: 128-134 https://doi.org/10.1034/j.1600-0501.2001.012002128.x
  15. Rocci A. Martignoni M, Burgos PM, Gottlow J, Sennerby L. Histology of retrieved immediately and early loaded oxidized implants: light microscopic observations after 5 to 9 months of loading in the posterior mandible. Clinical Implant Dentistry and Related Research 2003; 5(Suppl 1): 88-98 https://doi.org/10.1111/j.1708-8208.2003.tb00020.x
  16. Ericsson I, Johansson CB, Bystedt H, Norton MR. A histomorphometric evaluation of bone-to-implant contact on machine-prepared and roughened titanium dentalimplants. Clin Oral Impl Res 1994; 5: 202-206 https://doi.org/10.1034/j.1600-0501.1994.050402.x
  17. Mustafa K, Wroblewski J, Hultenby K, Silva Lopez B, Arvidson K. Effects of titanium surfaces blasted with $TiO_2$ particles on the initial attachment of cells derived from human mandibular bone. Clin Oral Impl Res 2000: 11: 116-128
  18. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A. Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004; 87(3) :529-533
  19. Ivanoff CJ. Widmark G. Johansson C, Wennerberg A. Histologic evaluation of bone response to oxidized and turned titanium micro-implants in human jawbone. Int J Oral Maxillofac Implants 2003: 18: 341-348
  20. Degidi M, Petrone G, Iezzi G. Piattelli A. Histologic evaluation of a human immediately loaded titanium implant with a porous anodized surface. Clin Impl Dent Relat Res 2002: 4(2): 110-114 https://doi.org/10.1111/j.1708-8208.2002.tb00160.x
  21. Glauser R, Portmann M, Ruhstaller P, Lundgren AK. Hammerle C. Gottlow J. Stability measurements of immediately loaded machined and oxidized implants in the posterior maxillal A comparative clinical study using resonance frequency analysis). Applied Osseointegration Research. 2001: 2(1): 27-29
  22. Glauser R, Gottlow J. Lundgren AK, Sennerby L, Portmann M, Ruhstaller P. Hammerle C. Immediate occlusal loading of Branemark Mk IV TiUnite implant placed in bone quality type 4. Applied Osseointegration Research 2002: 3(1): 22-24
  23. Friberg B. Billstrom C. Preliminary results of a prospective multicenter clinical study on TiUnite implants. Applied Osseointegration Research 2002: 3(1): 29-31
  24. Rocci A. Martignoni M, Sennerby L. Gottlow J. Immediate loading of a Branemark System implant with the TiUnite surface. Histological evaluation after 9 months. Applied Osseointegration Research 2002: 3(1): 25-28
  25. Salata L. Rasmusson L, Novaes A. Papalexiou V, Sennerby L. The influence of anodic oxidation on implant integration and stability in bone defects. An RFA study in the dog mandible. Applied Osseointegration Research 2002: 3(1): 32-34
  26. Glauser R, Lundgren AK, Gottlow J, Sennerby L, Portmann M, Ruhstaller P, Hammerle C. Immediate occlusal loading of Branemark TiUnite implants placed predominantly in soft bone: 1-year results of a prospective clinical study. Clin Implant Dent Relat Res. 2003: 5 (1) Suppl: 47-56
  27. Olsson M, Urde G, Andersen JB, Sennerby L. Early loading of maxillary fixed cross-arch dental prostheses supported by six or eight oxidized titanium implants: Results after 1 year of loading, case series. Clinical Implant Dentistry and Related Research 2003: 5(1) Suppl: 81-87 https://doi.org/10.1111/j.1708-8208.2003.tb00019.x
  28. Son WW, Zhu XL, Shin HI. Ong JL, Kim KH. In vivo histological response to anodized and anodized /hydrothermally treated titanium implants. J Biomed Mater Res Part B; 2003; Appl Biomater 66B: 520-525
  29. Sul YT, Johansson CB, Jeong Y, Roser K. Wennerberg A, Albrektsson T. Oxidized implants and their influence on the bone response. Journal of Materials Science: Materials in Medicine. 2001; 12: 1025-1031 https://doi.org/10.1023/A:1012837905910
  30. Sul YT, Johansson CB, Kang Y, Jeon DG, Albrektsson T. Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation. Clin Impl Dent Relat Res 2002: 4(2): 78-87 https://doi.org/10.1111/j.1708-8208.2002.tb00156.x
  31. Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003; 24: 3893-3907 https://doi.org/10.1016/S0142-9612(03)00261-8
  32. Liang B, Fujibayashi S, Neo M, Taumra J, Kim HM, Uchida M, Kokubo T, Nakamura T. Hisological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits. Biomaterials 2003: 24: 4959-4966 https://doi.org/10.1016/S0142-9612(03)00421-6