Environmental Consciousness Data Modeling by Association Rules

  • Published : 2005.08.31

Abstract

Data mining is the method to find useful information for large amounts of data in database. It is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are association rules, decision tree, clustering, neural network and so on. Association rule mining searches for interesting relationships among items in a riven large data set. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control. There are three primary quality measures for association rule, support and confidence and lift. We analyze Gyeongnam social indicator survey data using association rule technique for environmental information discovery. We can use to environmental preservation and environmental improvement by association rule outputs.

References

  1. 대한환경공학회 2003 춘계학술발표회 논문집 여름철 충청남도 서북부 지역에서의 대기오염물질 농도 분포특성에 관한 연구 김정태;정진도;김광석
  2. 한국지하수토양환경학회 01 추계학술발표회논문집 v.2001 통계분석을 이용한 지하수위 변동 특성 분류 문상기;우남칠
  3. 환경영향평가 v.4 no.2 수질자료의 추세분석을 위한 비모수적 통계검정에 관한 연구 이상훈
  4. 대한지리학회 v.33 no.2 폐기물 배출량의 지역간 차이에 관한 분석 이용우
  5. 한국지하수토양환경학회 98 공동심포지엄 및 추계학술발표회 논문집 v.1998 부산지역 지하수의 수질오염 특성 정상용;강동환;심병완
  6. 한국환경위생학회지 v.26 no.4 다변량 통계분석법을 이용한 대구지역 부유분진의 오염원 기여도 추정 최성우;송형도
  7. 전국폐기물통계조사 환경부
  8. 전국폐기물발생현황 환경부
  9. 상수도통계 환경부
  10. 하수도통계 환경부
  11. 오수.분뇨 및 축산폐수처리 통계 환경부
  12. 환경통계연감 환경부
  13. 대기환경연보 환경부
  14. 환경백서 환경부
  15. Proceeding of the ACM SIGMOD Conference on Management of Data Mining association rules between sets of items in large databases Agrawal, R.;Imielinski, R.;Swami, A.
  16. Proceeding of the 20th VLDB Conference Fast algorithms for mining association rules Agrawal, R.;Srikant, R.
  17. Int's Conf. on Parallel and Distributes Information System A fast distribution algorithm for mining association rules Cheung, D.W.;Han, J.;Ng, V.;Fu, A.W.;Fu, Y.
  18. Proceeding of ACM SIGMOD Conference on Management of Data An effective hash-based algorithms for mining association rules Park, J.S.;Chen, M.S.;Philip, S.Y.
  19. SIGMOD Record v.30 no.4 Using unknowns to prevent discovery of association rules Saygin, Y.;Vassilios, S.V.;Clifton, C.
  20. Proceedings of ACM SIGMOD Conference on Management of Data Dynamic itemset counting and implication rules for market data Sergey, B.;Rajeev, M.;Jeffrey, D.U.;Shalom, T.
  21. Proceedings of the 22nd VLDB Conference Sampling large database for association rules Toivonen, H.