가공 열처리에 따른 Ti-10Ta-10Nb합금의 미세조직 및 기계적 특성 변화

Effects of Thermomechanical Processing on Changes of Microstructure and Mechanical Properties in Ti-10Ta-10Nb Alloy

  • 이도재 (전남대학교 공과대학 금속공학과) ;
  • 황주영 (전남대학교 공과대학 금속공학과) ;
  • 이경구 (전남대학교 공과대학 금속공학과) ;
  • 윤계림 ((주) 금강기건 부설연구소) ;
  • 전충극 ((주) 금강기건 부설연구소)
  • 투고 : 2004.12.23
  • 심사 : 2005.02.18
  • 발행 : 2005.03.30

초록

Both commercially pure titanium and Ti-6Al-4V alloy have been widely used as biomaterials because of their excellent biocompatibility, corrosion resistance and mechanical properties. However, in recent years, vanadium has been found to cause cytotoxic effects and adverse tissue reactions, while aluminium has been associated with potential neurological disorders. A newly designed ${\alpha}+{\beta}$ type Ti alloy, Ti-10Ta-10Nb alloy showed superior properties to CP Ti and Ti-6Al-4V alloy in the point of biomaterial, and elucidated the future uses as a biomaterial. Microstructural changes of Ti-10Ta-10Nb alloy after hot-rolling, warm-rolling, solution and aging treatment were investigated. According to TEM results, the microstructures after solution treatment were composed of mostly ${\alpha}$ phase with a trace of ${\beta}$ phase due to adding ${\beta}$-phase stabilizer tantalum and niobium. The microstructures after warm-rolling is coarse and elongated ${\alpha}$ phase and hot rolling resulted in very fine ${\alpha}$ widmanst$\ddot{a}$tten. The highest value of hardness was obtained by aging treatment at $400^{\circ}C$ for 20hr in which microstructure consisted of very fine ${\alpha}$ phase in ${\beta}$ matrix.

키워드

참고문헌

  1. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro : Design and mechanical properties of new $\beta$ type titanium alloys for implant materials, A243, (1998) 244-249
  2. J. A. Davidson, A. K. Mishra, P. Kovacs, R. A. Poggie: Bio-Med. Mater. Eng. 4 (1994) 231-243
  3. S. G. Steinemann: Corrosion of Surgical Implants invivo and on-vitro Tests, Evalution of Biomaterials, John Wiley & Sons Ltd., (1980) 1
  4. Y. Tsumori, T. Matsumoto, Y. Koyama, Tetsu-to Hagane 72 (1992) 1862
  5. F. S. Lin, E. A Starke, Jr., S. B. Chakrabortty, A, Gysler : Metall. Trans. A, 1984, vol. 15A, 1229-1245
  6. D. Eylon, S. Fujishiro, P. J. Postans and E H. Froes: Titanium Technology, E H. Froes, D. Eylon and H. B. Bomberger (Eds) (1985) 87-94
  7. J. P. Hirth and F. H. Froes: Met Trans., 8A (1977) 1165-1176
  8. T. Furuhara : Role of Defects on Microstructure Development of Beta Titanium Alloys, Metals and Materials, Vol. 6, No.3 (2000) 221-224 https://doi.org/10.1007/BF03028215
  9. G. T. Terlinde, G. W. Duerig and J. C. Williams : Titanium '80 Science and Technology, H. Kimura and O. Izumi (Eds), TMS-AIMS, PA (1980) 1571
  10. G. T. Terlinde, T. W. Duerig and J. C. Williams : Metall. Trans. A, 14 (1983) 2101 https://doi.org/10.1007/BF02662377
  11. I. Kuboki, Y. Motohashi and M. Imaboyashi: Tetsuto-Hagane, 77 (1991) 824 https://doi.org/10.2355/tetsutohagane1955.77.6_824
  12. H. J. Cho and J. H. Lee: Microstructures and tensile characteristics of Ti-6AI-4V alloy by double solution treatment, K. J. Material Research, Vol 4, 6, (1994) 626