Oxide Cathodes for Reliable Electron Sources

  • Weon, Byung-Mook (Biomedical Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Je, Jung-Ho (Biomedical Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Park, Gong-Seog (LG. Philips Displays) ;
  • Koh, Nam-Je (LG. Philips Displays) ;
  • Barratt, David S. (LG. Philips Displays, Philips Road) ;
  • Saito, Tsunenari (Tokyo Cathode Laboratory)
  • Published : 2005.12.21

Abstract

In this paper, we investigate the oxide cathodes for the development of reliable electron sources. Poisoning in oxide cathodes is one of the serious problems in achieving reliable electron emission. In particular, early poisoning induces poor life performance as will be demonstrated herein. The survivability of electron emission sources is significantly improved by high doping of high-speed activator. The robust oxide cathodes with 0.17 % Mg operating at about 1,050 K are expected to work for very long times (>100,000 hours). We suggest that this key idea will contribute to solving the basic problems in oxide cathodes such as poisoning or ion bombardment for high power or high frequency applications of electron sources.

Keywords

References

  1. M. Sedlacek, Electron Physics of Vacuum and Gaseous Devices (1996)
  2. S. H. Gold and G. S. Nusinovich, Rev. Sci. Instrum. 68, 3945 (1997)
  3. A. Wehnelt, Ann. Phys. 14, 425 (1904)
  4. W. F. Brinkman and D. V. Lang, Rev. Mod. Phys. 71, S480 (1999)
  5. A. K. Bhattacharya, J. Appl. Phys. 65, 4595 (1989)
  6. R. Umstattd, T. Pi, N. Luhmann Jr., G. Scheitrum, G. Caryotakis, and G. Miram, AIP Conf. Proc. 474, 280 (1999)
  7. W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)
  8. D. Leneman, W. Gekelman, and J. Maggs Jr., Phys. Rev. Lett. 82, 2673 (1999)
  9. M. Starodubtsev and C. Krafft, Phys. Rev. Lett. 83, 1335 (1999)
  10. N. S. Ginzburg, A. A. Kaminsky, A. K. Kaminsky, N. Y. Peskov, S. N. Sedykh, A. P. Sergeev, and A. S. Sergeev, Phys. Rev. Lett. 84, 3574 (1999)
  11. L. M. Awasthi, G. Ravi, V. P. Anitha, P. K. Srivastava, and S. K. Mattoo, Plasma Sources Sci. Technol. 12, 158 (2003)
  12. K. C. Mishra, R. Garner, and P. C. Schmidt, J. Appl. Phys. 95, 3069 (2004)
  13. H. Suzuki, in Advances in Imaging and Electron Physics, 105 (1999)
  14. H. Friedenstein, S. L. Martin, and G. L. Munday, Rep. Prog. Phys. 11, 298 (1946)
  15. L. M. Field, Rev. Mod. Phys. 18, 353 (1946)
  16. A. A. Shepherd, Brit. J. Appl. Phys. 4, 70 (1953)
  17. S. Wagener, Proc. Phys. Soc. B 67, 369 (1954)
  18. P. Wargo and W. G. Shepherd, Phys. Rev. 106, 694 (1957)
  19. N. A. Surplice, J. Phys. D: Appl. Phys. 1, 1245 (1968)
  20. S. Itoh, M. Yokoyama, and K. Morimoto, J. Vac. Sci. Technol. A 5, 3430 (1987) https://doi.org/10.1116/1.583833
  21. G. Gaertner, D. Raasch, D. Barratt, and S. Jenkins, Appl. Surf. Sci. 215, 72 (2003)
  22. A. D. White, J. Appl. Phys. 20, 856 (1949) https://doi.org/10.1063/1.1698544
  23. E. S. Rittner, Philips Res. Rep. 8, 184 (1953)
  24. R. W. Peterson, D. E. Anderson, and W. C. Shepherd, J. Appl. Phys. 28, 22 (1956)
  25. R. J. Soukup, J. Appl. Phys. 48, 1098 (1977)
  26. T. Aida, S. Taguchi, S. Yamamoto, and H. Fukushima, J. Appl. Phys. 53, 9029 (1982)
  27. B. M. Weon, A. van Dam, G. S. Park, C. H. Hwang, S. D. Han, I. W. Kim, S. K. Seol, Y. B. Kwon, C. S. Cho, J. H. Je, Y. Hwu, W. L. Tsai, and P. Ruterana, J. Vac. Sci. Technol. B 21, 2184 (2003)
  28. B. M. Weon and J. H. Je, J. Appl. Phys. 97, 036101 (2005)
  29. B. M. Weon and J. H. Je, Appl. Surf. Sci. 251, 59 (2005)
  30. H. Nakanishi, in IDW'01 Digest (2001), p. 695
  31. G. F. Fussmann, S. P. Ellner, K. W. Shertzer, and N. G. Hairston, Science 290, 1358 (2000)
  32. B. T. Grenfell, O. N. Bjornstad, and J. Kappey, Nature 414, 716 (2001)
  33. B. M. Weon, J. L. Lee, and J. H. Je, J. Appl. Phys. 98, 096101 (2005)