Theoretical Calculation and Experimental Verification of the Hf/Al Concentration Ratio in Nano-mixed $Hf_xAl_yO_z$ Films Prepared by Atomic Layer Deposition

  • Kil, Deok-Sin (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.) ;
  • Yeom, Seung-Jin (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.) ;
  • Hong, Kwon (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.) ;
  • Roh, Jae-Sung (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.) ;
  • Sohn, Hyun-Cheol (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.) ;
  • Kim, Jin-Woong (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.) ;
  • Park, Sung-Wook (Advanced Process-FEP, Research & Development Division, Hynix Semiconductor Inc.)
  • 발행 : 2005.06.30

초록

We have proposed a characteristic method to estimate real composition when multi component oxide films are deposited by ALD. Final atomic concentration ratio was theoretically calculated from the film densities and growth rates for $HfO_2$ and $Al_2O_3$ using ALD processed HfxAhOz mms.W e have transformed initial source feeding ratio during deposition to fins] atomic ratio in $Hf_xAl_yO_z$ films through thickness factors ($R_{HFO_2}$ ami $R_{Al_2O_3}$) ami concentration factor(C) defined in our experiments. Initial source feeding ratio could be transformed into the thickness ratio by each thickness factor. Final atomic ratio was calculated from thickness ratio by concentration factor. It has been successfully confirmed that the predicted atomic ratio was in good agreement with the actual measured value by ICP-MS analysis.

키워드

참고문헌

  1. D. Hausmann, J. Becker, S. Wang and Roy Gordon, Science 298, 402(2002) https://doi.org/10.1126/science.1073552
  2. R. Gordon, D. Hausmann, E. Kim and J. Shepard, Chem. Vap. Deposition, Vol. 9, No.2, 73(2003) https://doi.org/10.1002/cvde.200390005
  3. M. D. Groner, J. W. Elam, F. H. Fabreguette, and S.M. George, Thin Solid Films 413, 186(2002) https://doi.org/10.1016/S0040-6090(02)00438-8
  4. K. Kukli, J. Aarik, A. Aidla, O. Kohan, T. Uustare, and V. Sammelselg, Thin Solid Films 260, 135(1995) https://doi.org/10.1016/0040-6090(94)06388-5
  5. H. B. Park, M. Cho, J. Park, S.W. Lee, and C. S. Hwang, Journal Applied Physics, Vol. 94, No.5, 3641(2003) https://doi.org/10.1063/1.1599980
  6. W. Nam, and S. W. Rhee, Chem. Vap. Deposition, 10, No.4,201(2004) https://doi.org/10.1002/cvde.200306277
  7. W. Nam, and S. W. Rhee, Electrochem. Solid-state Lett., Vol.7(4), C55(2004) https://doi.org/10.1149/1.1651392
  8. D. S. Kil et al., VLSI Tech. Dig.(2004), p.126-127
  9. D. S. Kil, J M. Lee and J. S. Roh, Chem. Vap. Deposition, Vol. 8, No.2, 73(2002) https://doi.org/10.1002/adma.19960080115
  10. W.F.A. Besling, E. Young, T. Conard, C. Zhao, R. Carter. W. Vandervorst, M. Caymax, S. De. Gendt, M. Heyns, J. Maes, M. Tuominen, and S. Haukka, Journal of Non-Cystalline Solids 303, 123(2002) https://doi.org/10.1016/S0022-3093(02)00969-9
  11. Y. J. Lee, and S. W. Kang, J. Vac. Sci. Techno. A 21(5), L13-L15(2003) https://doi.org/10.1116/1.1590963