Effect of Chemical Treatments and Electric and Magnetic Field Treatments on Germination of Onion Seeds

화학적 처리와 전장 및 자기장 처리가 양파 종자의 발아에 미치는 영향

  • Choi, Choong-Lyeal (Institute of Agricultural Science and Technology, Kyungpook National University) ;
  • Kwak, Dong-Jun (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Park, Man (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Song, Kyung-Sik (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Jang-Eok (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Choi, Jyung (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Lee, Dong-Hoon (Department of Agricultural Chemistry, Kyungpook National University)
  • 최충렬 (경북대학교 농업과학기술연구소) ;
  • 곽동준 (경북대학교 농화학과) ;
  • 박만 (경북대학교 농화학과) ;
  • 송경식 (경북대학교 농화학과) ;
  • 이인구 (경북대학교 농화학과) ;
  • 김장억 (경북대학교 농화학과) ;
  • 최정 (경북대학교 농화학과) ;
  • 이동훈 (경북대학교 농화학과)
  • Received : 2005.03.11
  • Accepted : 2005.04.15
  • Published : 2005.04.30

Abstract

This study was conducted to investigate the effects of chemical treatments and electric and magnetic field treatments on germination and seedling growth of onion (Allium cepa L.). Germination ratios of the onion seed were not much different among the tested species. However, germination ratio was much higher in species of small and medium size seed than that of large one. Moisture content of the seeds was shown to be more suitable in the range of 10-15% for seed germination compare to that of 20%. The germination ratio of onion seeds was found to be increased by the chemical treatments in the order of GA<$NaNO_3$<$KNO_3$. In particular, the treatments with 0.1 and 0.2% $KNO_3$ increased the germination ratio by 13 and 15% compared to that of the non-treatment. The seeds treated with electric or magnetic field resulted in much higher germination ratio and better initial growth. Germination ratios of 86 and 88% were found in the 10 kV and 4 Gauss treatments, respectively. The length and weight of the seedlings grown for 40 days after transplanting were increased by 23-45% with 8 kV and 12 Gauss treatments compared to those of non-treatment.

국내에서 자가 채종되는 양파종자의 품종, 종자의 함수량 및 종자크기가 발아율에 미치는 영향과 gibberellin, $KNO_3$$NaNO_3$ 등의 화학약품, 및 전기장과 자기장 처리가 발아율과 초기생육에 미치는 영향을 조사하였다. 종자의 품종에 따른 발아율의 변화는 거의 없었으나, 채종 후 저장 또는 건조정도에 따라 큰 차이를 나타내었다. 종자의 함수량이 10-15% 범위에서 발아율이 가장 높았으며, 대립종자보다는 중립과 소림종자의 발아율이 높게 나타났다. 화학약품을 처리한 종자의 발아율 GA < $NaNO_3$ < $KNO_3$ 순으로 높게 나타났다. $KNO_3$ 0.1%와 0.2% 처리로 최종발아율이 10-12% 증가하였으며, nitrate가 양파종자의 발아촉진 및 발아율 향상에 효과적인 것으로 나타났다. 전기장 또는 자기장 처리에 의해 양파종자의 발아율이 향상되었으며, 전기장 10 kV와 자기장 4 Gauss 처리시 각각 86%와 88%로 무처리구에 비해 10-12% 높았다. 또한 전기장과 자기장 처리로 양파종자의 초기생육은 향상되었으며, 파종 40일 후의 초장 및 생체중량이 무처리구에 비해 23-45% 증가되었다.

Keywords

References

  1. Adams, R. 1999. Germination of Callitris seeds in relation to temperature, water stress, priming and hydration-dehydration cycles. J. Arid Environ. 43:437-448 https://doi.org/10.1006/jare.1999.0567
  2. Ahn, H. K., S. K. Kim, and J. H. Oh. 1984. Seed germination of Actinidia arguta as affected by chilling, gibberellin, kinetin, and light. J. Kor. Soc. Hart. Sci. 25:290-296
  3. Anderson, R. G., and R. E. Widmer. 1975. Improving vigor expression of clyclamen seed germination with surface disinfection and gibberellin treatments. J. Amer. Soc. Hort. Sci. 100:597-601
  4. Bevilacqua, L. R., F. Fossati, and G. Dondero. 1987. 'Callose' in the impermeable seed coat of Sesbania punicea. Ann. Bot. 59:335-341 https://doi.org/10.1093/oxfordjournals.aob.a087322
  5. Cai, H. W., and H. Morishima. 2000. Genomic regions affecting seed shattering and seed dormancy in rice. Therr. Appl. Genet. 100:840-846 https://doi.org/10.1007/s001220051360
  6. Caroline, P., H. W. Linus, and A. Douwe. 1995. Importance of dormancy and sink strength in sprouting of anions (Allium cepa) during storage. Physiol. Plant. 94:277-283 https://doi.org/10.1111/j.1399-3054.1995.tb05312.x
  7. Cho, S. K., H. Y. Seo, I. H. Choi, Y. S. Jang, D. Y. Hyun, E. Tai, and K. G. Choi. 2001. Optimal sowing time for pelleted onion (Allum cepa L.) seeds in direct sowing culture. J. Kor. Soc. Hort. Sci. 42:410-414
  8. Choi, I. J., K. J. Kim, and J. W. Lim. 2001. The priming technology for increasing seed viability by using $KNO_3,\;K_3PO_4$, and plant growth regulators in cacti. J. Kor. Soc. Hart. Sci. 42:346-350
  9. Forbes, I. J., and M. H. Ferguson. 1948. Effect of strain difference, seed treatment, and planting depth on seed germination of Ziysia spp. Agron. J. 40:725-732 https://doi.org/10.2134/agronj1948.00021962004000080006x
  10. Karssen, C. M., S. Zagorski, J. Kepczynski, and S. P. Groot. 1989. Key role for endogenous gibberellins in the control of seed germination. Ann. Bot. 63:71-78 https://doi.org/10.1093/oxfordjournals.aob.a087730
  11. Kim, J. S., and Y. B. Lee. 1998. Ionizing radiation hormesis in crops. Korean J. Environ. Agtic. 17:75-85
  12. Kwon, B. S., E. T. Lee, D. H. Chung, H. J. Park, and S. R. Lee. 1995. The effects of the planting time of mother bulb and mulching materials for the seed production of onion (Allium cepa L.). J. Oriental Bot. Res. 8:247-252
  13. Lee, E. K., J. S. Kim, Y. K. Lee, and Y. B. Lee. 1998. The acceleration of germination in welsh onion seed irradiated with low dose -ray radiation. Korean J. Environ. Agtic. 17:346-351
  14. Lee, E. S., S. Y. Kim, and K. J. Kim. 1987. Studies on optimum temperature for sprouting and breaking dormancy in potato (Solanum tuberosum L.) cultivars for processing. J. Kor. Soc. Hort. Sci. 28:226-232
  15. Lee, S. C., and S. W. Park. 2000. Characteristics of pellet seed on germination and emergence in onion (Allum cepa L.) Kor. J. Plant Res. 13:41-47
  16. Lee, S. W., and J. M. Lee. 1986. Effect of cultivar, sowing media, seed size and gibberellin treatment on seed germination and seedling growth of Cyclamen persicum mill. J. Kor. Soc. Hort. Sci. 27:283-288
  17. Menzel, K. 1972. Cyclamen germination - a comparison between seed weight and germination capacity. Deustsche Gartnerborse 72:1008-1012
  18. Moon, J. D., and H. S. Chung. 2000. Acceleration of germination rate of tomato seed by applying AC electric and magnetic fields. J. Electrostat. 48: 103-114 https://doi.org/10.1016/S0304-3886(99)00054-6
  19. Okazaki, N., N. Yanai, and K. Hishinuma. 1978. Control of the germination of secondary dormant cocklebur seeds by various germination stimulants. Plant Cell Physiol. 19:1497-1506
  20. Park, C. S., D. S. Lee, J. T. Kim, S. H. Kim, B. T. Kim, G. W. Bahng, and S. M. Lee. 2000. The effect of magnetic field on the plant seed sprout. J. Kor. Soc. Jungshin Sci. 4:17-22
  21. Passam, H. C., and D. Kakouriotis. 1994. The effects of osmoconditioning on the germination, emergence and early plant growth of cucumber under saline conditions. Sci. Horti. 57:223-240
  22. Roberto, L. B., R. A. Sanchez, F. Forcella, B. C. Kruk, and C. M. Ghersa. 2000. Environmental control of dormancy in wood seed banks in soil. Field Crop. Res. 67:105-122 https://doi.org/10.1016/S0378-4290(00)00087-3
  23. Woo, Y. H., and J. M. Lee. 1985. Germination of spinach seeds as influenced by cultivar, seed size, seedcoat removal, and some environmental conditions. J. Kor. Soc. Hort. Sci. 26:239-245
  24. Yoo, Y. K., and K. S. Kim. 1998. Effects of some pretreatments on seed germination of white forsythia (Abeliophyllum distichum). J. Kor. Soc. Hort. Sci. 39:86-91