Study on the Screening System of Organic Resources for Agricultural Utilization

유기성 자원의 농업적 활용을 위한 선별체계 연구

  • Lim, Dong-Kyu (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Seung-Hwan (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Kwon, Soon-Ik (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • So, Kyu-Ho (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Sung, Ki-Suk (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Koh, Mun-Hwan (Environmental and Ecology Division, National Institute of Agricultural Science and Technology) ;
  • Lee, Jeong-Taek (Environmental and Ecology Division, National Institute of Agricultural Science and Technology)
  • 임동규 (농업과학기술원 환경생태과) ;
  • 이승환 (농업과학기술원 환경생태과) ;
  • 권순익 (농업과학기술원 환경생태과) ;
  • 소규호 (농업과학기술원 환경생태과) ;
  • 성기석 (농업과학기술원 환경생태과) ;
  • 고문환 (농업과학기술원 환경생태과) ;
  • 이정택 (농업과학기술원 환경생태과)
  • Received : 2005.03.21
  • Accepted : 2005.04.04
  • Published : 2005.04.30

Abstract

This study was conducted to find suitable methods for screening organic resources useful for compost. Twenty-seven industrial and domestic sludges were collected from various cities and industrial areas. Contents of organic matters in the sludges were in the range of 79.3-98.0%, and the contents were much higher than the regulation level (60%) for raw materials of compost. Contents of total nitrogen were in the range of 0.8-2.6%. Contents of Fe and Al were very high. Content of HEM was highest in textile sludge ($257mg\;kg^{-1}$) and the contents in the others were in the range of $12.6-90.3mg\;kg^{-1}$. Content of PAHs was lowest in food sludge ($739.1{\mu}g\;kg^{-1}$ and pulp-mill sludge had the highest PAHs content ($3461.8{\mu}g\;kg^{-1}$). $Microtox^{(R)}$ $EC_{50}$ values were higher in the sludges which were classified as a possible material in composting after analysis and investigation. Lettuce root elongation and $EC_{50}$ values were relatively lower in pulp-mill sludge, sewage sludge 3 (Large city), food sludge and leather sludge. Therefore, mineral nutrients, heavy metals, organic compounds (HEM, PAHs, PCBs), and bioassay ($Microtox^{(R)}$ $EC_{50}$, Relative root elongation test) are recommended to be included in the screening system of raw material of compost in addition to the current regulation with organic matter and 8 heavy metals.

본 연구는 퇴비원료로 활용할 수 있는 유기성 자원을 선발할 수 있는 선별체계를 확립하고자 여러 지역 및 산업체를 임의로 선정하여 현재의 규정상 퇴비의 원료로 사용 가능한 물질과 사용 불가능한 물질에 해당되는 유기성 오니를 7종 27점 채취하여 일반성분 함량, 중금속 함량, 유기화합물 함량 등을 조사하였고, 오니 추출물을 이용하여 $Microtox^{(R)}$ 분석 및 상추종자 유근신장에 미치는 영향을 조사하였다. 유기물 함량은 모든 오니에서 79.3-98.0%로 퇴비원료에 규정된 60%를 크게 상회하였고, 전질소 함량은 0.8-2.6% 범위이었다. 철과 알루미늄 함량은 상당히 높았으며, 퇴비원료의 규제기준인 중금속 8종의 경우 아연과 구리함량은 섬유오니에서, 크롬함량은 섬유 및 피혁오니에서, 니켈함량은 섬유, 피혁, 식품, 하수오니 4 (공단지역)에서 그리고 수은함량은 하수오니 3 및 4 (대도시, 공단지역)에서 규제기준치 이상으로 조사되었다. 납, 비소, 카드뮴의 함량은 모든 시료에서 규제 기준치보다 낮았다. HEM 함량은 섬유오니에서 다른 재료보다 월등히 높았으며, PAHs 함량은 제지 오니에서 가장 높았고 그 다음은 피혁오니>하수오니 2 (중소도시)>하수오니 4 (공단지역) 순으로 낮았다. PAHs 함량은 anthracene, phenanthrene, naphthalene, acenaphthene 및 fluorene가 다른 화합물 함량보다 상당히 높았으며, 이들 화합물 함량에서는 제지오니, 피혁오니, 하수오니 2 4 1 (중소도시, 공단지역, 읍 면단위 농어촌지역)에서 다른 오니보다 높았다. $Microtox^{(R)}$ 분석에서 가축분뇨 (돈분뇨), 음식물류 폐기물, 하수오니 1 (읍 면단위 농어촌지역), 식품오니에서 $EC_{50}$ 값이 비교적 높게 나타났으나, 피혁오니, 섬유오니, 하수오니 4 (공단지역)에서 가장 낮은 수치를 보였다. 제지오니, 하수오니 3 (대도시), 식품오니, 피혁오니의 추출물은 상추종자의 유근 신장율을 크게 저해하였다. 따라서 현재 퇴비원료 규제기준인 유기물과 중금속 함량 (8성분) 이외 추가로 일반성분, 미량 중금속, 유해 유기화합물, 생물검정법 및 포장비효시험 등을 이용하여 유망한 유기성 오니의 퇴비원료로 활용 가능성을 검토할 수 있는 방법으로 선별체계를 구축한다면 현재 퇴비원료의 규제기준을 보완할 수 있으며 최종적으로 가장 효과적이고 확실한 검정방법인 작물재배시험을 실시하기 이전에 유용한 유기성 자원의 활용여부를 판별해 낼 수 있으리라 생각된다.

Keywords

References

  1. Boonchan, S., M. L. Britz, and G. A. Stanley. 2000. Degradation and mineralization of high molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 66:1007-1019
  2. Campbell, C. D., A. Warren, C. M. Cameron, and S. J. Hope. 1997. Direct toxicity assessment of two soils amended with sewage sludge contaminated with heavy metals using a protozoa (Colpoda steinii) bioassay. Chemosphere 34:501-504 https://doi.org/10.1016/S0045-6535(96)00389-X
  3. Dar, G. H. 1997. Impact oflead and sewage sludge on soil microbial biomass and carbon and nitrogen mineralization. Bull. Environ. Contam. Toxicol. 58:234-240 https://doi.org/10.1007/s001289900325
  4. Debosz, K., S. O. Petersen, L. K. Kure, and P. Ambus, 2002. Recycling of sewage sludge and household compost: Effects on soil fertility under laboratory and field conditions. Appl. Soil Ecol. 19:237-248 https://doi.org/10.1016/S0929-1393(01)00191-3
  5. Elsgaard, L., S. O. Petersen, and K. Debosz. 2001. Effect and risk assessment of linear alkyl benzenesulfonate (LAS) in agricultural soil. 2. Effects on soil microbiology as influenced by sewage sludge and incubation time. Environ. Toxicol. Chem. 20: 1664-1672 https://doi.org/10.1897/1551-5028(2001)020<1664:EARAOL>2.0.CO;2
  6. Eom, K. C., D. K. Lim, K. Y. Jung, J. S. Shin, and J. H. Kim. 2003. Development of model for sustainable agriculture adaptable to different agricultural regime. p. 107-225. In Development on practical using models of organic resources in detail agricultural regimes. Ministry of Agriculture and Forestry, Gawcheon, Korea
  7. Ferre, M. and D. Barcelo. 2004. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trac-Trends Anal. Chem. 22:299-310 https://doi.org/10.1016/S0165-9936(03)00504-1
  8. Hall, J. E., D. R. Sauerbec, and P. L'Hermite. 1992. Effects of organic contaminants in sewage sludge on soil fertility, plants and animals. Commission of the European Communities, Luxembourg, Belgium
  9. Harms, H. 1996. Bioaccumulation and metabolic fate of sewage sludge derived organic xenobiotics in plants, Sci. Total Environ. 185:83-92 https://doi.org/10.1016/0048-9697(96)05044-9
  10. Hembrock-Heger, A. 1992. Persistent organic contaminants in soils, plants and food. p. 78-89. In J. E. Hall, D. R Sauerbeck, and P. L'Herrnite, (ed.) Effects of organic contaminants in sewage sludge on soil fertility, plants and animals, Commission of the European Communities, Luxembourg, Belgium
  11. Levi-Minzi, R., R. Riffaldi, G. Guidi, and G. Poggio. 1985. Chemical characterization of soil organic matter in a field study with sewage sludges and composts. p. 151-160. In J. Williams et al. (ed.) Long term effects of sewage sludge and farm slurries applications. Elsevier, New York, NY, USA
  12. Lim, D. K, S. I. Kwon, S. B. Lee, and M. H. Koh. 2003. The present status, characteristics and prospect of agricultural use of organic waste resources in domestic. p. 47-106. In Proceedings of International Seminar : Agricultural use and assessment of environment contamination on organic waste resources. UNDP Environment-Friendly Agriculture Project Group, Rural Development Administration and National Institute of Agricultural Science & Technology, Suwon, Korea
  13. Lim, D. K, S. B. Lee, S. I. Kwon, S. H. Lee, K. H. So, K S. Sung, and M. H. Koh. 2004. Affect of pharmaceutical byproduct and cosmetic industry wastewater sludge as raw materials of compost on damage of red pepper cultivation. Korean J. Environ. Agric. 23:211-219 https://doi.org/10.5338/KJEA.2004.23.4.211
  14. Ministry of Environment. 1991. Standard methods of waste analysis. Chapter 9. n-Hexane extractable material. Ministry of Environment, Gawcheon, Korea
  15. Ministry of Environment. 1998. Waste Control Act, Enforcement regulations. Appendix 5 and 7. Ministry of Environment, Gwacheon, Korea
  16. Nam, J. J., S. H. Lee, S. I. Kwon, S. Y. Hong, D. K Lim, M. H. Koh, and B. H. Song. 2004. Toxicity assessment of the soil by bioassay following a long-term application of sewage sludge. Korean J. of Envion. Agtic. 23:259-264
  17. Nam, J. J., B. H. Song, K C. Eam, S. H. Lee, and A. Smith. 2003. Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. Chemosphere 50:1281-1289 https://doi.org/10.1016/S0045-6535(02)00764-6
  18. Nam, J. J., W. W. Park, D. K. Lim, and S. H. Lee 2002. Quantification of n-Hexane extractable material (HEM) and estimation of annual pollutant loading rate by sewage sludge application to land. Korean J. of Envion. Agtic. 21:45-49 https://doi.org/10.5338/KJEA.2002.21.1.045
  19. NIAST. 2003. Official methods of analysis and explanation for official specification of fertilizer. National Institute of Agricultural Science and Technology, Suwon, Korea
  20. NIAST. 2004. The specified gist on possibile raw materials of compost required preliminary analysis and investigation of the characteristics. National Institute of Agricultural Science and Technology, Suwon, Korea
  21. NIER. 2004. Construction on comprehensive management technique of organic waste (I). Disposal condition and characteristic survey of organic waste. National Institute of Environmental Research, Seoul, Korea
  22. Obbard, J. P. 2001. Ecotoxicological assessment of heavy metals in sewage sludge amended soils. Appl.. Geochem. 16:1405-1411 https://doi.org/10.1016/S0883-2927(01)00042-7
  23. RDA. 2004. Official specification of fertilizer. Rural Development Administration, Suwon, Korea
  24. Smith, S. R., V. Voods, and T. D. Evans. 1998. Nitrate dynamics in biosolids-treated soils. I. Influence of biosolids type and soil type. Bioresource Technol. 66: 139-149 https://doi.org/10.1016/S0960-8524(97)00095-3
  25. USEPA. 1994. Test methods for evaluating solid waste, physical/chemical methods (SW-846), Method 9071B. US Environmental Protection Agency, Washington DC, USA
  26. USEPA. 1996a. Test methods for evaluating solid waste, physical/chemical methods (SW-846), Method 3630C : Silica gel cleanup. US Environmental Protection Agency, Washington DC, USA
  27. USEPA. 1996b. Test methods for evaluating solid waste, physical/chemical methods (SW-846), Method 8270C : Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). US Environmental Protection Agency, Washington DC, USA
  28. USEPA. 1988. Protocols for short term toxicity screening of hazardous waste sites. EPA/600/3-88/029. US Environmental Protection Agency, Washington DC, USA