Effect of Oyster Shell Meal on Improving Soil Microbiological Activity

굴패화석 비료 시용이 토양의 생물학적 활성에 미치는 영향

  • Lee, Ju-Young (Department of Plant Nutrition, National Institute of Agricultural Science and Technology) ;
  • Lee, Chang-Hoon (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Ha, Byung-Hyun (Product Development Tram, Namhae Chemical Co.) ;
  • Kim, Seok-Cheol (Research Management Division, Rural Development Authority) ;
  • Lee, Do-Kyoung (Plant Science Department, South Dakota State University) ;
  • Kim, Pil-Joo (Division of Applied Life Science, Graduate School, Gyeongsang National University)
  • Received : 2005.08.29
  • Accepted : 2005.09.22
  • Published : 2005.10.30

Abstract

The effect of oyster shell meal, which is made of a simple crushing and alkaline calcium materials, on soil microbial properties, microbial biomass C, N and P contents, and enzyme activities were evaluated in silt loam soil. The oyster shell meal fertilizer was added at the rates of 0, 4, 8, 12 and $16Mg\;ha^{-1}$. Microbial biomass C, N and P contents were significantly increased with increasing application of oyster shell meal. Soil enzyme activities, such as urease, ${\beta}$-glucosidase and alkaline phosphomonesterase were increased significantly by shell meal application, due to increased soil pH towards neutral range and increased nutrient availability in soil. In particular, the increased microbial biomass P content and phosphomonoesterase activities were strongly correlated with available P content in soil. Conclusively, oyster shell meal fertilizer could be a good supplement to improve soil microbial activities.

굴패각으로부터 제조된 굴패화석 비료 시용이 토양의 미시환경에 미치는 영향을 조사하기 위해 토양 내 microbial biomass 함량과 주요 토양효소의 활성을 조사하여 다음과 같은 결과를 얻었다. 굴패화석 시용량이 증가함에 따라 토양 내 microbial biomass C, N, P 함량이 크게 증가하였으며, 양분의 가급화와 관련 있는 주요 토양효소의 활성이 크게 증진되었다. 본 연구조건에서 굴패화석 시용에 따른 산성토양의 pH 개선은 microbial biomass P 함량 증진과 urease, ${\beta}$-glucosidase, alkaline phosphomonesterase의 활성증진에 직접적으로 영향을 주었으며, microbial biomass P와 phosphomonoesterase 활성증진은 유효인산 함량증진에 직접적으로 영향을 준 것으로 조사되었다. 결론적으로 약산성의 공시토양에 알카리성 제재인 굴패화석 시용은 토양생물과 효소 활성을 증대함으로써 작물생육에 필요한 양분공급 및 가용율 향상시키는 효과가 있는 것으로 평가되었다.

Keywords

References

  1. Brookes, P. C., D. S. Powlson, and D. S. Jenkinson. 1982. Measurement of microbial biomass phosphorus in soil. Soil BioI. Biochem.14:319-329 https://doi.org/10.1016/0038-0717(82)90001-3
  2. Caravaca, F., M. M. Aiguacil, R. Azcon, G. Diaz, and A. Roldan. 2004. Comparing the effectiveness of mycorrlrizal inoculation and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L. Appl. Soil Ecol. 25:169-180 https://doi.org/10.1016/j.apsoil.2003.08.002
  3. Ceccanti, B., B. Pezzarossa, F. J., Gallardo, and G. Masciandaro. 1993. Biotests as marker of soil utilisation and fertility. Geomicrobiol. J. 11:309-316 https://doi.org/10.1080/01490459309377960
  4. Coleman, D. C.. C. P. P. Reid, and C. Cole. 1983. Biological strategies of nutrient cycling in the soil systems. Adv. Eco. Res. 13: 1-55 https://doi.org/10.1016/S0065-2504(08)60107-5
  5. Duxbury, J. M., M. S. Smith, and J. W. Doran. 1989. Soil organic matter as source and a sink of plant nutrients. p. 33-68. In D, C. Coleman et al. (ed.). Dynamics of soil organic matter in tropical ecosystems. University of Hawaii Press, Honolulu, HA, USA
  6. Eivazi, F., and M. A. Tabatabai. 1977. Phosphatases in soil. Soil. BioI. Biochem. 9: 167-172 https://doi.org/10.1016/0038-0717(77)90070-0
  7. Fauci, M. F., and R. P. Dick. 1994. Soil microbial dynamics: Shortand long term effects of inorganic and organic nitrogen. Soil Sci. Soc. Am.J. 58:801-806 https://doi.org/10.2136/sssaj1994.03615995005800030023x
  8. Hu. S. J., A. H. C. van Bruggen, and N. J. Grunwald. 1999. Dynamics of bacterial populations in relation to carbon availability in a residue-amended soil. Appl. Soil Ecol. 13:21-30 https://doi.org/10.1016/S0929-1393(99)00015-3
  9. Jenkinson, D. S. 1988 The determination of microbial biomass carbon and nitrogen in soil. p. 368-386. In J. R. Wilson (ed.) Advances in nitrogen cycling in agricultural ecosystems Commonwealth Agricultural Bureau International, Wallingford, UK
  10. Kim, J. G., H. S. Lee, and J. G. Cho. 1994. Experiment of oyster shell on the culvert materials and neutralization possibility. p. 535-545. Annual Research Report, Gyeongnam Agricultural Research and Extension Services, Jinju, Korea
  11. Ladd, J. N., and M. Amato. 1988. Relationships between biomass $^{14}C$ and soluble organic $^{14}C$ of a range of fumigated soils. Soil BioI. Biochem. 20: 115-116 https://doi.org/10.1016/0038-0717(88)90135-6
  12. Lee, C. H., I. B. Lee, and P. J. Kim. 2004. Effects of long-term fertilization on organic phosphorus fraction in paddy soil. Soil Sci. Plant Nutr. 50:485-491 https://doi.org/10.1080/00380768.2004.10408504
  13. Lee, Y. H., J. G. Kim, H. S. Lee, J. S. Cho, and H. S. Ha. 1997. Effect of oyster shell, fly ash and gypsum application on rice yield and quality. J. Korean Soc. Soil. Fert. 30:242-247
  14. Lee, J. Y., C. H. Lee, Y. S. Yoon, B. H. Ha, B. C. Jang, K. S. Lee, D. K. Lee, and P. J. Kim. 2005. Effects of oyster shell meal on improving spring chinese cabbage productivity and soil properties. J. Korean Soc. Soil. Fert. (in this issue)
  15. Mazzarino, M. J., L. Szott, and M. Jimenes. 1992. Dynamics of soil total C and N, microbial biomass, and water-soluble C in tropical argo-ecosystems. Soil BioI. Biochem. 25:205-214
  16. McGill, W. B., K. R. Cannon, J. A. Roberson, and F. D. Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic carbon in Breton L after 50 years of cropping to two rotations. Can. J. Soil. Sci. 66:1-19 https://doi.org/10.4141/cjss86-001
  17. Murphy, J., and J. P. Riley. 1960. A modified single solution method for the determination of phosphate in natural water. Anal. Chim. Acta. 27:31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
  18. Plaza, C., D. Hernandez, J. C. Garcia-Gil, and A. Polo. 2004. Microbial activity in pig slurry-amended soils under semiarid conditions. Soil BioI. Biochem. 36:1577-1585 https://doi.org/10.1016/j.soilbio.2004.07.017
  19. RDA. 1999. Fertilization standard of crop plants. National institute of agricultural science and technology, Rural Development Admiistration, Suwon, Korea
  20. Sakamoto, K., and Oba, 1993. Relationship between available N and soil biomass in upland soils. Jpn. J. Soil Sci. Plant Nutr. 64:42-48
  21. Skujins, J. 1978. History of abiotic soil enzyme research. p. 1-49. In R. G. Burns (ed.). Soil enzymes. Academic press, New York, NY, USA
  22. Tabatabai, M. A., and J. M. Bremner. 1969. Use of $\rho$-nitrophenyl phosphate for assay of soil phosphatase activity. Soil BioI. Biochem.1:301-307 https://doi.org/10.1016/0038-0717(69)90012-1
  23. Tabatabai, M. A., and J. M. Bremner. 1972. Assay of urease activity in soils. Soil BioI. Biochem. 4:479-487 https://doi.org/10.1016/0038-0717(72)90064-8
  24. Tate, K. R., D. J. Ross, and C. W. Feltham. 1988. A direct extraction method to estimate soil microbial C: Effect of experimental variables and some different calibration procedure. Soil BioI. Biochem. 20:329-335 https://doi.org/10.1016/0038-0717(88)90013-2
  25. Vance, E. D., P. C. Brookes, and D. S. Jenkinsen. 1987. An extraction method for measuring soil microbial biomass C. Soil BioI. Biochem.19:697-702 https://doi.org/10.1016/0038-0717(87)90051-4
  26. Wu. J., R. G. Joergensen, B. Pommererning, R. Chaussod, and P. C. Brookes. 1990. Measurement of soil microbial biomass C by fumigation-extraction - an automated procedure. Soil BioI. Biochem. 22:1167-1169 https://doi.org/10.1016/0038-0717(90)90046-3