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Thin-Walled Curved Beam Theory Based on
Centroid-Shear Center Formulation
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To overcome the drawback of currently available curved beam theories having non-symmetric
thin-walled cross sections, a curved beam theory based on centroid-shear center formulation is
presented for the spatially coupled free vibration and elastic analysis. For this, the displacement
field is expressed by introducing displacement parameters defined at the centroid and shear
center axes, respectively. Next the elastic strain and kinetic energies considering the thickness-
curvature effect and the rotary inertia of curved beam are rigorously derived by degenerating the
energies of the elastic continuum to those of curved beam. And then the equilibrium equations
and the boundary conditions are consistently derived for curved beams having non-symmetric
thin-walled cross section. It is emphasized that for curved beams with L- or T-shaped sections,
this thin-walled curved beam theory can be easily reduced to the solid beam theory by simply
putting the sectional properties associated with warping to zero. In order to illustrate the validity
and the accuracy of this study, FE solutions using the Hermitian curved beam elements are
presented and compared with the results by previous research and ABAQUS’s shell elements.
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1. Introduction

Curved beam structures have been used in
many mechanical, aerospace and civil engineering
applications such as spring design, curved wires
in missile-guidance floated gyroscopes, curved
girder bridges, brake shoes within drum brakes,
tire dynamics, stiffeners in aircraft structures, and
turbomachinery blades. It can also be used as a
simplified model of a shell structure.

In general, the vibrational and elastic behavior
of thin-walled curved beam structures are very
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complex because the axial, flexural and torsional
deformations are coupled due to the curvature
effects as well as non-symmetry of cross section.
Investigation into the behavior of thin-walled
curved members has been carried out extensi-
vely since the early researches (Vlasov, 1961 ;
Timoshenko and Gere, 1961) and particularly
monographs by Dabrowski (1968), Heins (1975)
and Gjelsvik (1981) are worth remarking as use-
ful references for curved beam theory and its
applications.

Up to the present, considerable researches
(Lee, 2003 ; Raveendranath et al., 2000 ; Wilson
and Lee, 1995; Gupta and Howson, 1994) on
the free in-plane vibration of curved beam have
been done considering the various parameters
such as boundary conditions, shear deformation,
rotary inertia, variable curvatures and variable
cross sections. And the researches for the de-
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coupled free out-of-plane vibration behavior of
curved beam have been performed by several au-
thors (Chucheepsakul and Saetiew, 2002 ; Piovan
et al., 2000 ; Cortinez and Piovan, 1999 ; Howson
and Jemah, 1999 ; Kawakami et al., 1995). Also
Kang and Han (1998) presented the closed-form
solution and a numerical solution for the de-
coupled out-of-plane static analysis of a curved
beam with circular cross section subjected to tor-
que by the differential quadrature method.

It is well known that the thin-walled straight
beam theory with non-symmetric cross section
based on the centroid-shear center formulation
is established, in which its axial, flexural and
warping-torsional deformations are decoupled.
Hence the warping-free theory for straight beam
with non-symmetric thin-walled section is easily
obtained from the thin-walled beam theory by
simply putting the warping moment of inertia to
zero.

On the other hand, for the elastic and stability
theories of curved beams based on the centroid-
shear center formulation, most of previous re-
searches (Kang and Yoo, 1994 ; Yang and Kuo,
1987, 1986) have been restricted to those with
doubly symmetric thin-walled cross sections. Fur-
thermore it has been reported by Gendy and
Saleeb (1992) that the curved beam theory based
on the centroid-shear center formulation is valid
only for a cross section having doubly symmetry
or one axis of symmetry which lies in the plane
of beam curvature, otherwise, coupling terms
still exist. For this reason, it appears that most of
thin-walled curved beam theories with non-sym-
metric cross sections have been developed based
on displacement parameters which are all defined
at the centroid axis (Kim et al., 2002, 2000a, b ;
Hu et al., 1999 ; Gendy and Saleeb, 1994, 1992 ;
Saleeb and Gendy, 1991 ; Kim et al., 2002) pre-
sented analytical and numerical solutions on a
spatial free vibration of thin-walled curved beam,
as a separated curved structure, with non-sym-
metric section neglecting shear deformation effects
and Gendy and Saleeb (1994) presented an effec-
tive formulation on spatial free vibration of arbi-
trary thin-walled curved beam by including the
shear deformation and rotary inertia. However,

they partially considered the effect of thickness-
curvature and shear deformation.

It is important to note that these centroid
formulations for the vibration and elastic analysis
of thin-walled curved beam with L- or T-shaped
cross sections have a drawback to evaluate the
several sectional properties associated with war-
ping additionally because the warping function
of cross section at the centroid does not become
zero. To the best of my knowledge, Tong and
Xuws study (2002) was only the recent attempt
reported on the curved beam theory with non-
symmetric cross section based on the centroid-
shear center formulation in the literature. How-
ever they did not consider the thickness-curva-
ture effect which made the difference become
larger in curved beam with large subtended angle
and small radius and was restricted to only the
elastic analysis of curved beam.

The main purpose of this paper is to present a
curved beam theory with non-symmetric cross
section based on centroid-shear center formula-
tion, in which the axial and flexural displace-
ments are defined at the centroid and the lateral
and warping-torsional displacements at the shear
center, respectively. Particularly for curved beams
with L- or T-shaped sections, this thin-walled
curved beam theory can be reduced easily to the
theory neglecting the restrained warping torsion
by simply putting the sectional properties ass-
ociated with warping defined at the shear center
to zero. Also for the curved beam with non-sym-
metric closed sections, this beam theory may be
reduced naturally to that with neglecting warping
deformation because the values of sectional prop-
erties associated with warping at the shear center
become extremely large. The important points
presented are summarized as follows

(1) The displacement field for non-symmetric
thin-walled curved beams with constant curva-
ture is introduced, in which the axial displace-
ment and two flexural rotations are defined at the
centroid and the torsional rotation including the
normalized warping function and two lateral dis-
placements are defined at the shear center, re-
spectively.



Thin- Walled Curved Beam Theory Based on Centroid-Shear Center Formulation 591

(2) Next force-deformation relations due to
the normal stress considering the thickness-curva-
ture effect are accurately derived at the general
coordinates.

(3) And then the elastic strain and kinetic
energies based on the centroid-shear center for-
mulation are newly derived for the free vibra-
tion and elastic analysis of non-symmetric curved
beams having thin-walled open and closed cross
sections, respectively.

{(4) In addition, FE procedure using the He-
rmitian curved beam elements is presented for
the analysis of non-symmetric curved beams.
Finally to demonstrate the validity of the pro-
posed study, numerical solutions are presented
and compared with the results by available re-
ferences and ABAQUS’s shell elements.

2. Curved Beam Theory Based on the
Centroid-Shear Center Formulation

To degenerate a spatially coupled free vibration
and elastic theories for the continuum to those
for the thin~walled curved beams, the following
assumptions are adopted in this paper.

(1) The thin-walled curved beams are linearly
elastic and prismatic.

(2) The cross section is rigid with respect to
in-plane deformation except for warping defor-
mation.

(3) The axis of curvature does not necessarily
coincide with one of the principal axes.

S : Shear center
C : Centroid
(a) Displacement parameters

2.1 Kinematics

In this study, two curvilinear coordinate
systems are adopted to derive a general theory for
free vibration and elastic analysis of thin-walled
curved beams consistently. Fig. 1 shows the first
coordinate system (x1, X, X3), in which the &, axis
coincides with the curved centroid axis having the
radius of curvature R but x, x3 axes are not
necessarily principal inertia axes. While the sec-
ond coordinate system (xf, x5, x§) is constituted
by the shear ceunter axis and two orthogonal axes
running parallel with the direction of x3, x3 axes
(see Fig. 2). Also x} and x¥ are principal inertia
axes defined at the centroid. Then transformation
equations between two coordinates systems may
be expressed by

n=xf (1a)
x2=x5+e;=xf cos y—xf sin y (1b)
xs=1x5+es=xf sin y+xf cos ¥ (1c)

where (es, e3) denotes the position vector of the

Fig. 1 A curvilinear coordinate system for non
-symmetric thin-walled curved beam
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(b) Stress resultants

Fig. 2 Two coordinate systems, displacement parameters and stress resultants
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shear center and 7 is the angle between x; and the
x% axis.

To introduce the displacement field for the
non-symmetric thin-walled cross section, seven
displacement parameters and stress resultants are
used as shown in Figs. 2(a) and 2(b), re-
spectively. Assuming that the cross section is rigid
with respect to in-plane deformation, the dis-
placement field can be written as follows

Ur=Ux+ xsws—x203+ fp (%2, x3) (2a)
U= Uy—a(xa—&) (2b)
Us=Uz+ 0 (x2—e2) (2¢)

where Ux, wz, ws=the rigid body translation and
two rotations with respect to x1, X2, x3 axes; &,
U,, U,=the rigid body rotation and two trans-
lations with respect to x{, x3, x§ axes; f, ¢=the
displacement parameter measuring warping de-
formation and the normalized warping function
defined at the shear center, respectively. For later
use, sectional properties with respect to the cen-
troid-shear center are defined as

L= [32 dA, I= [} dA. b= [raxs dA

Io=[# dA, o= [$xs dA, In=[$: dA
(3a-1)
12222 Ax? dA, 1223= Aszg dA, 1233= Ax%xa dA

Ion= /A 652 dA, Im= [A $as dA, Losr= fA #xs dA

where A, L, [z and Liz=the cross sectional area,
the second moments of inertia and the product
moment of inertia about x, and x3 axes, respec-
tively. [,=the warping moment of inertia. It
should be noticed that Iy, Iss are always equal
to zero and looe, lozs, Doss, g2z, 123, Ipp2 denote the
sectional properties to consider the thickness-
curvature effect which makes the difference be-
come larger in curved beam with large subtended
angle and small radius.

2.2 Principle of virtual work
With the assumption of the rigid in-plane de-
formation, stress resultants with respect to the

centroid-shear center axes are defined as follows
F=lm dA, Fo= | dx, F3=/T13 dA
A A A
M1='£[r13(xz—ez) —le(xa—ea)]dA

(4a-h)
M= /A s dA, Me=— fA rixs dA, My= /,, mé dA

MRZ/;[T12¢,2+ Tla( ¢,3—‘}£—%>]R;x3 dA

where Fi=the axial force acting at the centroid ;
F, and Fi;=the shear forces acting at the shear
center ; Mi=the total twisting moment with re-
spect to the shear center axis; M, and Ms==the
bending moments with respect to x» and xs axes,
respectively. Mr and My=the restrained (non-
uniform) torsional moment and the bimoment
about the shear center axis, respectively.

The principle of virtual work for the general
continuum vibrating harmonically is expressed as

Jwbes dV—a [pUSU: dV= /5 T8UdS  (5)

where e;,=the conventional linear strain due to
U;; p=the density ; w=the circular frequency;
T:=the surface force. The first term denotes the
conventional internal virtual work giving the elas-
tic strain energy and the second term represents
the kinetic energy. In case of the thin-walled
circular beam, Eq. (5) may be transformed to
the principle of the total potential energy I] as
follows

H:HE_HM—Hext (6)

where the detailed expressions for each term of

11 are

:
HE:%X /A[T11€11+2T12612+2f13el3] R;xs

dA dx, (7a)
om0+ 8 G420 s 9

Hext z‘;_ UgFe (7C)

where U,, F.=the nodal displacement and nodal
force vectors, respectively.
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On the other hand, strain-displacement rela-
tions due to the first order displacements are
expressed as follows

211:<U11 US) L

R+X3
i l:_e
({5 0)
6 , , , R
~xz<—*ﬁ+w3>+x3wz+¢f}m
2enp= g_l_ + U2
R (8b)
=[U§—9'(X3—€3)]—R*+'xa‘ws+f¢,z
2613:<U31 %1> RI-E + Uws
~[-Lrr it e —H w80
+}Cs Cz)s"L ¢} fo +wetfds

For thin-walled circular beams subjected to di-
stributed loadings, by substituting linear strains
(8a-c) into Eq. {7a) and integrating over the
cross sectional area, Eq. (7a) is reduced to the

following equations.

=g [ R{ U422 ) i~ s it
+F2<Uy' —40)34‘@3)()

(9)

+1~“3(— %"+U;+wz+1§ wa—ﬁRe—s f)

And Eq. (7¢c) can be expressed as

l
Hext:/; [pl Ux+p2Uy+p3Uz

+ muw1+ maws+ maws+ mef ] dxy

(10)

where pi, p», ps are the distributed forces in the
direction of x1, X2, X3 axes and 21, W2, M3, e
denote distributed moments.

Now by invoking the stationary condition of
the total potential energy, equilibrium equations
and boundary conditions are obtained as

Ff+%=—l?1 (11a)

Fi=—p (11b)
—%+F§=_p3 (11c)
B R M+ %3 —m (11d)
—F3+M;=— (1le)
Pt S Rl B2y p=—my (110
—%Fﬁfj,gi Fat 3 M~ Me (1)
—Me+M;=—my
and
SUx(0)=8U%f or Fi(o)=—F}f (12a)
SU(1)=8U# or R (I)=Ff (12b)
8U,(0) =8U7 or Fy(0)=—Ff (12¢)
UL (1) =08Uy or Fr(l)=F¢ (12d)
8U:(0) =8U?¢ or Fs(o)=—F¥¢ (12¢)
SU(1) =0Uf or Fs(1) =F¢ (12f)
80(0) =86* or My(0)=—M{F (12g)
86(1) =067 or My(1) =My (12h)
Swz(0) =0wh or My(o) =—M¢ (12i)
Sw2(l) =0wi or Mo(l) =M7 (12j)
Sws(0) =8wh or Ms(o) =—M¢ (12k)
Sws(l) =8wd or My(l) =Mg (121)
8f (0) =8f* or My(0) =—M}§ (12m)

Of (1) =617 or My(1) =M§ (12n)

2.3 Elastic strain and Kkinetic energies of

thin-walled curved beam

Now force-deformation relations due to the
normal stress are derived. In this study, the shear
deformation effects due to both the shear forces
and the restrained warping torsion are neglected.
Therefore, the shear rigidity constraints in Eq.
(9) are as follows

2
ﬁw3+%f=o (13a)

U;: W3 R
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_Ux

ot U +a)2+% wa—%#o (13b)
9’+%+f—%f=o (13c)

Form Eq. (13a-c), the rotational displacements
w2, w3, and the warping parameter f may be re-
written with respect to U, U,, U, 8 as follows

0=l - S g (14a)
_ 2
== e Sy (14b)

R R

Accordingly we can rewrite the displacement field
Uh in Eq. (2a) using Eqs. (14a-c).

S e

. _Ux ﬂ 73 72 €283 7
xs{ 7t BtU+ % 6}(15)

(e g)ets

where £'=the Young’s modulus and

L=t pep-ts (17a6)
23—123 IZZ I¢—I 1;52 (17¢,d)

And the St. Venant torsional moment is expressed
as

— ‘(L R+eS ’
Mo=Gj (+ELe &) (18)

where G =the shear modulus and [=the tor-
sional constant. In evaluating Eqs. (16a-d), I
and Iy vanish and the following approximation
is used.

Consequently substitution of force-deformation
relations (16a-d) and (18) into Eq. (9) leads to
the elastic strain energy of the thin-walled curved
beam with non-symmetric cross section.

M=y | [24{tr+ -2 o)

pea g g U et @
+E5( it o Rzﬂ)
Also the normal strain e;; can be obtained by 2
- - +E1(R R ﬁ)
substituting Eqs. (14a-c) into Eq. (8a). And then 3 r! TR
by substituting Eq. (8a) into Egs. (4a), (4e), R+ea , Uy Rt ,
(4f), (4g) and integrating over the cross section, +EI'( R R 4 ) +G]< 6) (20)
the following force-deformation relations due to tla o U 06 @ N\ R-&, &, @
the normal stress are obtained. +2E123<R L + + f 2ﬂ>< - I3 7! R)
a " _ EIL&_ Uy M v\ € Uyt o
(A-l-ﬁ L In L ] ! R (T 6)( + HH- o= R’e)
R "R R R Ly Bl U7 Rba [ R-
2 @ o G G 9 }
Zl A Bl Ra)(RUyRH yile
R
M: =E j s I Now by eliminating F3, F3, Mz from Eqs. (11a-
M, R ~lw Iy g), equilibrium equations of curved beams be-
den I I | come
R? R R ¢ .
(16a-d) oM ms
U &____ F1+ R 151 R (21&)
*'R
ﬂ__ﬂ " __ //_eZ—eS 6// ‘—1114?1 _7?4M +M3”
R R * R _ R+ (21b)
R‘e.'i U//_fég//_i RQS p2+ ms— wh
R 7 R R
y R-I_ 17 r” 4
B R 2t — R M= (21c)




Thin- Walled Curved Beam Theory Based on Centroid-Shear Center Formulation 595

e py ey M Rie g
R R R TR
) (21d)
€3 m €63 ’

=—F1)2“— TR Ma— My

And substitution of Eqgs. (16a-d) and (18) into
Egs. (21a-d) results in

N e
QE] ( & Um/+ U”N+£ _I_ €263 6”” e 0//)
R = U\R R R?
+Ef3< R— €3 Um/ 63 em/__%)
+Ef23(ei(2—§—es> U+ U+ Rzz
+ eze3(§ e3) 0;/;/ ZReZZ 0//) (22b)

G] Uy R+eS 4
Rl R
El, (U . Rte ,,
R (T TR)
= R;&a pz-I-R ™y — i
Efz{ eZ Um/ // Zml_z Rzz _%
8283 6//// 1222 <[___) 61/_'__ 0}
. ° » g (22¢)
—Efz3( Rea }:m R3e3 ea 0rrrl_+_ 7 LAY RB)
(Ux “&__ )_ Py 2

@ EA(Uer&—— J+4 Elz( el ~2 Uy
A R_ " "

+E13< Rz@a y_?e;z‘a _%>

+Ef23{_eze3(}1§z—ea) o (21; ) 4 (22d)

UZ eZeS v ez_e3 _ﬁ " 2e2
+G]{R+e3 +(R+e3) eu}

—E]¢< R+eﬁ ﬂ/m) Rapz_ml eReS mZ m¢

Also we can obtain the kinetic energy [Ix by
substituting the displacement field in Egs. (2b,c)
and (15) into Eq. {(7b) and as follows

M=t ’[A{mwwzwz(em;) +20(e:l-ali)

(B2 y- L1 9') +12(U, Ty 0’)

ffeap By by Rey ay)

RUx(Uz _I_ery+eze30)
w22 - 4 2 ) v gy 8 )

+ I}geza(R [4] U- @3 0,)(R+63 g+ Uy)

Hi-2 B8 [nez)02+2—(InUz-IzUy)

oot

(23)

where

e
R 9

1233
R kd

I 4223

i2212+ I~3=I:4+

123_123
(24)

T=I+ Igz’ I,=L+L+ Izzz;rélzss

As mentioned previously, for the curved beams
with cross sections neglecting the warping func-
tion at the shear center such as L- or T-shaped
cross sections, the sectional properties (i.e., Iy,
Isz2, Iozs, Is) in Egs. (20) and (23) associated
with warping become zero obviously. Also for
curved beams with non-symmetric closed sec-
tions, these properties have the extremely large
values so that those can be interpreted as penalty
numbers in the strain energy of curved beams.
Resultantly this means that strain and kinetic
energy terms related to warping should vanish in
the centroid-shear center formulation for the
curved beams with L- or T-shaped cross sections
or closed sections.

Based on these reasons, for the spatially coupl-
ed vibration and elastic analysis of curved beams
with thin-walled open cross sections having the
warping function vanishing at the shear center or
with thin-walled closed cross sections, the elastic
strain and kinetic energy expression can be easily
simplified to Eqs. (25) and (26), respectively.
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o Tmlelg o

+EL{ 2 U ﬁw g g

vef( e y- e’a” g Bakiag) o)

+2Eln( i +_+ @ls gr_ }63220)

(Eey- 8 2 iﬂdxl

and

i o0 [ AN+ U3+ 02464 +20aslhe)
+1}( B -2 g i - Yer & g 80 g
Ra IS
+€2 U+l 0,)
hal( 128 U;—% 7| ;-@+ 2 145 )

R
+(1’,,—2%§3——2£’I’~§1) az]dxl

2
-4 a’)+z
(26)

L
kgL

On the other hand, Kim et al.(2002) used follow-
ing elastic strain and kinetic energies for the
spatially coupled free vibration analysis of curved
beam with non-symmetric cross section inclu-
ding the L- or T-shaped sections based on the
centroid formulation in which the seven displace-
ment parameters are defined at the centroid.

=1 [ [ea(us+ &) e v+ S5

o
+85 (U -V 07 (Lovpe)’

w2l U +E) (0~ B )+ mi (Yo re ) )
+2Ef$2(U§"+ afl Igw)

+28f U;"—%)(%Jr ef')}dxl

where

fe— - fc _7c Ién fe e Lz _
I5=I§ R’I” I R,ha I ? (28a-c)

and

M= o0 [ |AUE+U5+02) +1( U -L2)

el

LU +2I U UF -2 U+ Ugac)

{oso+ 0. ve-
sl UC(U”- Ux) Ny (29)
+I°(—R’—+0d) +zicz<Uz" —%) <—yd+9d>
Yy Ux( Uf +0°>+213U’< +90)]de
where

IMZ I¢3—]¢3 + [¢23 (303.—0)

c 4 I
[¢=I¢+’ﬂ“2‘ R

R 4

The transformation equations between the sec-
tional properties associated with warping which
are defined at the centroid and those at the shear
center can be obtained. For this, the kinematical
relationship between ¢° and ¢ defined at the
centroid and the shear center, respectively, can be
expressed as

P°=p+ erx3— esxs (31)

Then the transformation equations may be ex-
pressed as follows

IE=/¢csz=f(¢+ezx3—e3xz) sz

(32a)
= [,+ &2 Iz+€[3 2esesly
I¢z:/¢ ‘xsdA= _/(IH‘ezxa esxs) x3dA (32)
—2212 63123
Iz = | ¢°02d A= | (P+ e2x3— e3x2) x2d A
3 :4/- 2 [ 2X3— €3X2) X2 (320)
=—eahtels
Tn=| ¢%axsd A= | (§+ eaxxs— eaxa) x2x3d A
¢232/ 2X3 A/ 23— €3%2) X2X3 (32d)
=] o2zt e2bozs— esloss
I = [ ¢°%3dA= | (p+ exxa— esxz) x3dA
22 Af 3 _A/ 23 2) X3 (320)

=Ip22t ealoor— €303

Lis2 :/¢czx3dA = /( ¢ +eax3— eaXz) ZX3dA
a A

32f
=Ippot €2 s+ €5 Loz +2 €242 (320

—2e3lpas—2ene3lhs
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Here it should be noticed that when Eq. (25)
compares with Egs. (27) and (26) with Eq. (29),
one can find a drawback in the previous formu-
lation (Kim et al., 2002), namely the elastic strain
and kinetic energies from the centroid formula-
tion should retain the several sectional properties
related to the warping function which does not
become zero at the centroid.

3. Finite Element Formulation

The Hermitian curved beam element having
arbitrary thin-walled cross sections is used bas-
ed on the elastic strain and kinetic energy ex-
pressions derived in the previous Section. Fig. 3
shows the nodal displacement vector of thin-
walled Hermitian curved beam element including
restrained warping effect. This curved beam ele-
ment has two nodes and eight degrees of freedom
per node. As a result, the element displacement
parameters Ux, Uy, U & can be interpolated
with respect to the nodal displacements, which
the detailed expression is presented in Kim et al.
(2002).
tions, material and cross-sectional properties into
Egs. (20), (23) and (10) and integrating along
the element length, equations of motion of thin-
walled curved beam element are obtained in ma-

By substituting the interpolating func-

trix form as

(Ke—a)zMe) Ue:Fe (33)

where

U _<u", vf, wh, of, Wf, of, f°, gp> (342)
=

u?, vi, w?, o, vf, of, 7, g°

Fp, FP’ MP, MP, MP’ MP, FP

Fl,FZsFS’MI,MZ,M3,M¢,Fm> (34b)

[0

Fig. 3 Nodal displacement vector of Hermitian
curved beam element

In the above equation, K. is the 1616 element
elastic stiffness matrix in local coordinate. In
this study, stiffness matrices are evaluated using
a Gauss numerical integration scheme. For Eq.
(34a), it is convenient to transform the rotational
and axial nodal displacement components into
the nodal components including curvature effect
as following

#h=—U; (o) + U’}SO) =w§+i‘]§ (35a)
P~ L < sy
F=Ui (o) + Uz}(eo) =g"+ﬂRpA (35¢)

For the evaluation of the element stiffness ma-
trix corresponding to the transformed nodal dis-
placements, the transformation between the mem-
ber displacement vectors of Eqs. (34a) and the
member displacement considering the effect of
curvature is expressed as

U;=T.Us, {=0, q (36)

where
Us={u®, v*, w”, of, &}, &8, /%, g”} (37a)
Us={u?, v*, w?, of, @k, b, f*, 3*} (37b)

Ul={u? v7, w of, of, i, f%, g7} (37c)

Ui={u% v w’ of, &%, i, % &°} (37d)

and

Tl= (38)

—I/R' . |
. . 1 .

. I/R 1

i . '—I/R’ . . . -1

Based on Eq. (36), equilibrium equation (33) is
transformed to

(Ke_ (I)ZMe> ﬁe:Fe (39)

where
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oP

—  Juf, v, wP, of, @8, of, f, g
e~ q ,4q q q ~q 7qa 5 <40a)

u?, ve, we, of, &4, i, 19, &°

~ /Ft, B}, Ff, Mf, M3, M¥, M3, F%,
Fe= 7 7 I9 g 1fe 7 ff9 I'e (40b)

K, K, B, MY, M5, Mi, M3, Fr

Matrices and vectors in Eq. (39), respectively, are
evaluated as

Ke=T"K.T, Mc=T"M.T

~ - . (41a-d)
Ue=T"Ue, Fe=T"F.

where

T1 *
T= 42
|:' Tl:l ( )
Then the global system of matrix equilibrium
equation for the free vibration and elastic analysis

of non- symmetric thin-walled curved beam may
be obtained using the direct stiffness method.

4. Numerical Examples

In this Section, the free vibration and elastic
analysis of curved beam with mono-symmetric
and non-symmetric thin-walled cross sections
are performed and compared with the solutions
obtained from a single reference line (the line
of centroid) formulation presented by Kim at
al.(2002), solutions by other researchers and
ABAQUS’s shell elements. Also in subsequent
examples, the curved beam is modeled by 20
Hermitian curved beam elements.

4.1 Curved beams with mono-symmetric

cross sections

First the simply supported curved beam with
mono-symmetric cross section for the xs axis
which the beam length / is 200 cm and the sub-
tended angle &, is 90°, as shown in Fig. 4 is
considered. It is well known that the in-plane
and out-of-plane behavior of this curved beam
is decoupled because the section is mono-sym-
metric in the plane of beam curvature.

The lowest ten natural frequencies by this study
are presented and compared with the solutions
based on the centroid formulation which all se-
ven displacements are defined at the centroid in
Table 1. And the lateral displacement U, and

the twisting angle @ at the shear center of mid-
span of curved beam subjected to torsional mo-
ment M;=10000 Ncm acting at mid-span by this
study are compared with the solutions by the
centroid formulation in Table 2. It can be found

Table 1 Natural frequency of simply supported
curved beam with x3 mono~symmetric sec-
tion, (rad./sec)

Mode This study C-formulation
1 1.6579 1.6579
2 33.049 33.049
3 37.792 37.792
4 40.767 40.767
5 44.559 44.559
6 55.998 55.998
7 59.412 59.412
8 84.894 84.894
9 94.375 94.375
10 116.51 116.51

Table 2 Lateral displacement and twisting angle
of simply supported curved beam with x3
mono-symmetric section, (cm, rad.)

Mode This study C-formulation
Uy —1.8911 —1.8911
7 0.057387 0.057387
X3
I
' X2
Sentrot 10 em
entrot N ! 0.5 cm
R
6, j———>
5 cm

(a) Geometry of a curved (b) Mono-symmetric cross

beam section for x3 axis

E=2x10"N/cm?, G=7692308. N/cm?,
0=0.077009 N/cm® A=12.5cm? J=1.04167 cm®,
;=0 cm, ¢:=8.61538 cm, ,=133.33333 cm?,
1;=67.70833 cm“, Lrpp=—100 Cms,
L3z=—41.66667 cm®, I,==641.02564 cm®,
I423=641.02564 cm®, Ipp»=—486.93294 cm”

(c) Material and sectional properties
Fig. 4 Simply supported curved beam with mono~

symmetric cross section for xa axis
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from Tables 1 and 2 that the natural frequencies
and the displacements by this study coincide ex-
actly with the solutions based on the centroid
formulation.

Table 3 Natural frequency of simply supported
curved beam with x, mono-symmetric sec-
tion, (rad./sec)

Mode This study C-formulation
1 3.9294 3.9294
2 27.940 27.940
3 73.536 73.536
4 87.308 87.308
5 91.445 91.445
6 138.77 138.77
7 148.30 148.30
8 158.23 158.23
9 219.67 219.67
10 225.27 225.27

Table 4 Lateral, vertical displacements and twisting
angle of simply supported curved beam
with x, mono-symmetric section, (cm, rad.)

Mode This study C-formulation
U, —1.8329 —1.8329
U, —0.11859 —0.11859
0 0.11398 0.11398

X3
v
* 0.5 cm
5 cm Xz
|
2 cm

(a) Mono-symmetric cross section for x; axis

E=2X10"N/cm? (G=7692308. N/cm?
0=0.077009 N/cm® A=4.5 cm? J=0.375 cm*
e;=—1.15033 cm, ea=0cm, L=17.70833 cm?,

3=1.77778 cm?*, I3 =4.62963 cm®, Jszs=1.23457 cm®,
1,=7.84314 cm®, [,33=—7.84314 cm®
(b) Material and section properties

Fig. 5 Simply supported curved beam with mono-
symmetric cross section for xz axis

Next, Fig. 5 shows the mono-symmetric cross
section for x, axis and its material and sectional
properties of simply supported curved beam, in
which the subtended angle and the beam length
are 90° and 100 cm, respectively. In this case, the
vibrational and elastic behavior of curved beam is
spatially coupled because of the mono-symmetric
cross section for x, axis. In Tables 3 and 4, the
spatially coupled natural frequencies and the dis-
placements at the shear center of loading point
of beam subjected to A;=10000 Ncm acting at
mid-span are given and compared. The excellent
agreement between results based on two formula-
tions is evident.

4.2 Curved beams with non-symmetric cross
section

In this example, the non-symmetric curved
beams with clamped-free and clamped-clamped
boundary conditions at the both ends are consi-
dered. Figure 6 shows the configuration of non-
symmetric cross section and the material and
sectional properties. First, the lowest ten spatially
coupled natural frequencies for cantilevered and
clamped curved beams for subtended angle 10°

X3

8 cm

4 cm
(a) Non-symmetric cross section

E=294300 N/cm? G=112815N/cm?,
0=0.077009 N/cm® A=7 cm’, J=0.58333 cm*,
e2=1.44846 cm, es=—2.04461 cm, 1,=67.04762 cm?,
,=8.42857 cm?, 53=9.14286 cm?, I32:=52.24490 cm®,
L23=—20.02721 cm®, Lps= —17.41497 cm®,
Lias=—13.38776 cm®, ],=42.48664 cm®
T322=24.48383 cm®, 23— —42.48664 cm®,
Ty33=—10.53165 cm®, [,52=117.44909 cm’, /=200 cm
(b) Material and section properties
Fig. 6 Cantilevered and clamped curved beams with

non-symmetric cross section



600 Kim Nam-1Il and Kim Moon- Young
Table 5 Natural frequency of cantilevered curved beam with non-symmetric section, (rad./sec)?
Vibration mode
bo 1 2 3 4 5 6 7 8 9 10
This study 0.0290 0.2686 0.5963 1.5252 5.1373 7.7437 17.386 20.622 27.159 52.343
10 Ki([;()gtz)al' 0.0290 0.2686 0.5963 1.5252 5.1373 7.7437 17.386 20.622 27.159 52.343
ABAQUS 0.0299 0.2670 0.5887 1.5265 5.0520 7.7433 16925 20.575 26.645 52.892
This study 0.0062 0.2061 0.2901 2.0272 52138 7.3645 17.473 32.844 37949 47.720
90 Ki(l;’og;)al. 0.0062 0.2061 0.2901 2.0272 52138 7.3645 17.473 32.844 37949 47.720
ABAQUS 0.0060 0.2043 0.2779 2.1714 50293 7.1815 17.079 32233 36.624 43574
Table 6 Natural frequency of clamped curved beam with non-symmetric section, (rad./sec)?
Vibration mode
b 1 2 3 4 5 6 7 8 9 10
This study 0.9488 44120 6.3262 17.731 18.778 21.295 49.633 59.534 99.774 119.58
10 Ki(rzno(é;tz)al. 0.9488 4.4120 6.3262 17.731 18.778 21.295 49.633 59.534 99.774 119.58
ABAQUS 0.9679 4.3543 6.4045 16946 18.565 21.369 50.231 58585 100.44 105.0t
This study 0.7223 3.9916 13.570 31.829 35.223 41.852 71.047 80.658 13820 148.88
90 Ki(r;ogtz)al‘ 07223 39916 13.570 31.829 35223 41852 71.047 80.658 13820 148.88
ABAQUS 0.7020 39088 13.38% 30.838 34.855 37.792 69.831 78.659 115.15 140.53

Table 7 Lateral, vertical displacements and twisting
angle of clamped curved beam with non
-symmetric section, (cm, rad.)

Mode This study C-formulation
U, - —1.4185 —1.4185
U: 0.12054 0.12054

0 0.16893 0.16893

and 90° with keeping the total length of beam
constant by this study are presented in Tables 5
and 6, respectively. For comparison, the previous
solutions based on the centroid formulation (Kim
at al., 2002) and the results obtained from 300
nine-noded shell elements (S9RS) of ABAQUS
which is the commercial finite element analysis
program are given. From Tables 5 and 6, it can be
observed that the centroid-shear center formula-
tion proposed by this study for the vibration
analysis of curved beam with non- symmetric
cross section is accomplished. Also results by
this study are in a good agreement with those by

ABAQUS’s shell elements. Additionally the lat-
U: displacements and the
twisting angle @ at the shear center of mid-span

eral U, vertical
for clamped curved beam subjected to a torsional
moment 1000 Ncm at the mid-span are presented
together with the results based on the centroid
formulation in Table 7, where exact agreement is
observed for the spatially coupled elastic analysis
of curved beam with non-symmetric cross section.

4.3 Curved beam with L-shaped cross sec-
tion

We concern the free vibration and elastic an-
alysis of the L-shaped curved beam as shown in
Fig. 7. The purpose of this example is to show the
usefulness of the proposed curved beam theory
with non-symmetric section neglecting warping
deformation and to verify how it predicts well the
behavior of structure by comparing the present
solutions with those by ABAQUS’s shell elements
and the previous researches. The curved beam is
the clamped at the both ends and subjected to
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X3
/1\ 12.7 em (5 in) N

1.27 em

51
4.45 kN ¥ osm

6.35 cm/| (1000 Ib
(2.5 1n)

1.27 cm
{0.5 in)

(a) Non-symmetric L-shaped cross section

E=20684.28 kN /cm? (=7955.49 kN/cm?,
0=0.077009 N/cm?®, A=24.1935 cm?,
J=13.00723 cm®, e;,=—4.23333 cm,
©3=1.05833 cm, L=81.29520 cm®*, ;=433.57440 cm®,
I3 =108.39360 cm®*, L= —229.43312 cm®,
Lpps=—229.43312 cm®, R=914.4 cm, /=609.6 cm
(b) Material and section properties
Fig. 7 Clamped curved girder with non-symmetric
L-shaped section

out-of-plane lateral force 4.45 kN (1000ib) ac-
ting at the mid-span. In Table 8, the lowest
ten spatially coupled natural frequencies by this
study using Egs. (25) and (26) are reported toge-
ther with those by previous research using Egs.
(27) and (29), which several sectional proper-
ties may be needed additionally for analysis and
with those obtained from 240 shell elements of
ABAQUS. From Table 8, it can be found that
present solutions coincide exactly with those by
previous research based on the centroid formula-
tion and for comparing with results by ABAQUS,
excellent agreement is observed with less than
2.2% as maximum of difference. It should be
noted that the present curved beam theory with
non-symmetric cross section which the warping
function is zero at the shear center eliminates the
sectional properties of structures for the dynamic
analysis of curved structures.

Next, the lateral displacement U, at the corner
of the L-shaped cross section along the curved
beam subjected to out-of-plane lateral force is
evaluated and plotted in Fig. 8. By considering
the symmetry, 10 curved beam elements are used.
For comparison, the results using Eq. (27) and 8
HMC2 curved beam elements by Gendy and
Saleeb (1992) based on the centroid formulation
and the solutions using 24 quadrilateral shell
elements developed by Saleeb et al.(1990) are

Table 8 Natural frequency of clamped curved beam
with L-shaped section, (rad./sec)?

Mode | This study | C-formulation | ABAQUS
1 5.6246 5.6246 5.5925
2 6.0305 6.0305 6.1635
3 10.792 10.792 11.001
4 17.427 17.427 17.224
5 19.116 19.116 19.461
6 23.800 23.800 23917
7 28.498 28.498 28.332
8 30.329 30.329 30.585
9 34.996 34.996 34.712
10 36.862 36.862 36.129
e
Present study
09 - [e] C-formulation N
A HMC2 (Gendy and Saleeb, 1992) Ny

08~ u Shelt elements (Saleeb eral., 1990) 3

I
07~

06 -

0.4 -

0.3 ~

Lateral displacement, U, (cm)
1

0.2 -

0.1 -

00 A,J%)’

2/l
Fig. 8 Lateral displacement at the shear center of
L-shaped girder

presented. Investigation of Fig. 8 reveals that
present solutions using Eq. (25) are in a good
agreement with those obtained from HMC2 ele-
ments and shell elements.

4.4 Curved box girder with non-symmetric
cross section

In our final example, the non-symmetric curv-
ed box girder as shown in Fig. 9 is considered.
The girder is simply supported at the two ends
and is subjected to an eccentric lateral force 89 N
(201b) at the exterior web of mid-span. Because
the material properties of plexiglass are time
dependent, a series of preliminary tension and
bending tests were performed on specimens cut
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R =106.68 cm
(42 in)

(a) Plane view

45.72 cm (18 1)

4 »

1
0.6248 cm
B9 N0 5946 in)
y 6.35 cm
0.6071 cm _plg xzf—“)XJ I
0.6248 ¢m (2.5 In)
(0.239 1) 0.246 n)
«——ple
N 0.4953 cm
7.62 cm 30.48 cm (12 in) 7.62 cm (0.195 )
[ 13 1) 3 in)
—A— R=129.54cm —
|

] (51 in}
(b) Non-symmetric box section

Fig. 9 Simply supported non-symmetric curved box

girder
0.30
Piesent study
0.45 O C-formulation
Py HMC2 (Gendy and Saleeb, 1992)
0.40 [w] Exp. (Fam and Turkstra. 1976)
n Shell elements (Fam and Tarkstra, 1976)

035 /e/er—/ﬁ
J
y”

Vertical displacement, U, (cm)

0.10

0.05 4

0.00 T T T T T T T T T
0.00 005 030 005 020 025 030 035 040 045 050

x/1
Fig. 10 Vertical displacement along the external web
of a curved box girder

from the same sheet as the model sections. As a
result of test, the material properties are taken
as E£=27597kN/cm® (400ksi) and poisson’s
ratio v=0.36. To prevent the distortion of cross
section of box girder, two end diaphragms and
four intermediate diaphragms at angles of 15°,
35°, 55°, and 75° from the lines of support are

installed. By considering the symmetry, one half
of span is modeled by 10 elements. Out-of-plane
lateral displacement of the top flange at the loca-
tion of the exterior web of midspan is shown
in Fig. 10. For comparison, the results by the
centroid formulation, 10 HMC2 elements, ex-
perimental results and FE solutions using shell
elements by Fam and Turkstra (1976) are pres-
ented. From Fig. 10, it can be found that present
results are in a good agreement with the com-
parisons reported. Consequently the analysis neg-
lecting the warping deformation results in an
excellent fit to the behavior of curved box girders.

5. Conclusions

A centroid-shear center formulation for the
spatially coupled free vibration and elastic an-
alysis of thin-walled curved beams with non-
symmetric open and closed cross sections is pro-
posed. This theory overcomes the drawback of
previous curved beam theory based on the cen-
troid formulation which should account for sec-
tional properties additionally for curved beams
with L- or T-shaped sections. In numerical exam-
ples, FE solutions using Hermitian curved beam
elements by this study are compared with those
obtained from the centroid formulation and the
results by available references and ABAQUS’s
shell elements. Consequently, the following con-
clusions may be drawn.

{1) The vibration and elastic theories of the
thin-walled curved beam neglecting the restrained
warping torsion at the shear center may be easily
derived from the thin-walled curved beam theory
based on the centroid- shear center formulation
by putting the sectional properties associated with
warping to zero.

(2) For vibration and elastic analysis of curv-
ed beams with mono-symmetric and non-sym-
metric cross sections, the solutions by this study
coincide exactly with those from the centroid
formulation.

(3) For curved beam with L-shaped cross sec-
tion, the natural frequencies and the displace-
ments obtained from this curved beam elements
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are in excellent agreement with those from curv-
ed beam elements including the warping and
ABAQUS’s shell elements. Resultantly it is be-
lieved that this study eliminates total sectional
properties of structures for the dynamic and elas-
tic analysis of curved structures.
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