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NECESSARY CONDITIONS FOR OPTIMAL CONTROL
PROBLEM UNDER STATE CONSTRAINTS

KyunG-EuNG KiMm

ABSTRACT. Necessary conditions for a deterministic optimal con-
trol problem which involves states constraints are derived in the
form of a maximum principle. The conditions are similar to those
of F.H. Clarke, R.B. Vinter and G. Pappas who assume that the
problem’s data are Lipschitz. On the other hand, our data are not
continuously differentiable but only differentiable. Fermat’s rule
and Rockafellar’s duality theory of convex analysis are the basic
techniques in this paper.

1. Introduction

In [5] and [11], Clarke, Vinter and Pappas derive the necessary con-
ditions associated with the optimal control problem which involves the
following state constrints

g(t,z(t)) <0 Vt € [ty, T]

when the function g(t,-) is Lipschtz. (See also [8] for the problem which
represents state constraints in the inclusion form z(¢) € X(¢)). In their
approach, they reduce the optimal control problem to the Bolza problem
of calculus of variations and use Ekeland’s variational principle and a
limiting process. Clarke’s nonsmooth analysis (see [5]) is the main tool in
which the derivatives are replaced by generalized gradient or generalized
Jacobian. As a result, the adjoint equation is represented by the form
of inclusions.
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We consider the following Mayer problem with free end points

minimize  ¥(z(T))

subject to z'(t) = f(t,z(t),u(t)) a.e. t € [to, T]
u(t) € U(t) a.e. t € [to, T
g(t,z(t)) <0Vt € [to, T).

In contrast with the above authors, we derive the necessary conditions
with assumption that g(¢,-) and f(¢, -, u) are only differentiable not con-
tinuously differentiable. Under this assumption, our results can not
be obtained directly from those of the above authors. In other words,
Clarke’s generalized gradient (respectively Jacobian) is not reduced di-
rectly to the classical gradient (respectively Jacobian). We will obtain
the adjoint equation instead of the adjoint inclusion which can augment
the number of controls verifying the maximum principle.

The underlying idea is to take a direct approach (without reduce
the original optimal control problem to the Bolza problem of calculus
of variations) by using Fermat’s rule: at the point of minimum the
derivative of the function is nonnegative in the directions which are
tangent to constraints.

2. Statement of problem and preliminaries

Consider a complete separable metric space Z, two real numbers
to < T and the following functions:

¥ :R" - R,

fito, T] x R" x Z —» R",

g:[to, T] x R* — R.
Let U : [tg, T] ~ Z be a set-valued map. We associate to the above data
the following control system:

(1) { 2 (t) = f(t,z(t),u(t)), u(t) € U(t) ae. in [to, T
g(t,z(t)) <0 Vit € [ty, T

We say that a function z : [tg,7] — R™ is a solution of (1) if z is
absolutely continuous(AC) and verifies (1).
We study here the following optimal control problem:

min {¢(z(T)) | z is a solution of (1)} .

Let us introduce the following notations:
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S‘[@,T,t](y) _ {T € AC(rt:RY | © verifies (1) in [1, 1], } ’

(1) =y

RI(t) = {x(t) |z € S ](;L’()) for some xp such that g(tg.zp) <0 }.

[to.t
Throughout the whole paper we suppose that
i) g is differentiable
ii) 1 is differentiable
iii) f(t,-,u) is differentiable
iv) f(-,z.u) is measurable
v) f(t,x,-) is continuous
vi) there exists k € L>(to,T;R.) such that for all t € [ty,T], for all
(z.y) € R" x R",
1f(t 2. u) = f(t,y, u)l] < E@)]lz -yl
vii) there exists m € L?(to, T; R4 ) such that for all ¢ € [to, T1,
up ol] £ m(O)(1 + )
ve f(t,x,U(t))
viii) U(-) is measurable
ix) for all ¢ € [to, T). U(t) is nonempty and compact
x) for all (¢,z). f(t,z,U(t)) is convex.
We first recall the definition of polar cone. Let K be a subset of a
Banach space X. The positive polar cone of K is defined by
Kt={pe X*|VueK, (pu)>0}

where X* is the dual space of X. The negative polar cone of K is defined
by

K ={peX*|Vue K, (pu) <0}
The contingent cone Tk (x) to K at z is defined by:

ist(z + h
Ti(x) = {v € X | Tim inf S5UE AV, K)
h—0+ h

= 0}.

In the following, we fix a trajectory-control pair (Z,a). Let us intro-
duce the following sets.

vz mny | W () = S E(), @) w(t) + v(t),
A - {IL € W (tO‘TﬁR ) ‘ ’U(t) € Tf(t,j:(t),U(t))(:i/(t ) a.e. }’

fl:{weA

w e Who(tg, T R”)},

Sz{te[to,T] ' g(t,i:(t)):()},
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S; = {tE [to,T] ‘ te S+%[—1,1]},

Dz:{wecuo,T;R") \ (221, a(t)),w(t) <0 wesz},

dg
(520, 2(0)), w(t) <0 Vi€ s} ,

where W12(to, T; R™) (respectively, Wh®(to, T;R™)) is the space of
functions w € L%(to, T; R™) (respectively, L% (tg, T; R™)) such that w' €
L3(to, T; R™) (respectively, L™ (to, T; R™)).

D= {w € C(to, T; R™)

PROPOSITION 2.1. Suppose gﬂ%(-,f(-)) is continuous and there exists
W € A and p > 0 such that for all t € [to, T},
dg
t,z(t)),w(t)) < —p.
(91, (0)), 0(1)) <~
Then
’7(_4 NnD;) C TRg(T) (Z(T)) Yi
where v is a linear continuous function defined by:
v:C(ty, T;R") — R"
w —  w(T).

Proof. Let w € AN D; and wy = Aw + (1 — A\)@w where A €]0, 1.
Because A and D; are convex and w € AN D;, wy € AN D;. Fix A. Set
F(t,z) = f(t,z,U(1))

and note that

oL, 2(0), 00w (0) € DE( 20,2/ (9) (wr(t) ae

(for the definition of adjacent derivative DYF(t,Z(t),Z'(t)), see [2]).
Therefore we have

wh(t) € DPF(t,2(1), &' (t))(wa()) + Tra(e) (T (1)
= DUF(t,z(t), 2'(t)) (wA(t)) +DbF(t (1), &'(¢))(0)
= D°F(t,5(t), ' (1)) (wa(t))

by Proposition 5.2.6 of [2].
In the proof of Theorem 10.5.1. of [2], we can see that there exists a
constant M > 0 and the solutions a:ﬁ of the system such that

”ml/y -z - hwl)\“Ll(to,T;R”) < M - O(h)’
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and
) — T
h T T W uniformly.
On the other hand, we have
2 (8) = 2(2)]
lzh(t) = 2(t) = hwn(®)]| + hllwa(®) ]

IN A

2 (to) — Z(to) — hwx(to)l| + hllwa(to)||
t

t
+ [ Nl (s) = 2'(s) — ha(s) s + h/t llwi(s)llds
0

to

(2) o(h) + hllwx(to)|| + M - o(h) + h||w}

We want to prove that for all A > 0 small enough,

IA

L= (to,7:R™) (T — to)-
zh € SﬁO,T](JCﬁ(tO))-

15 case: t € [to, T]N'S;. In this case,

(52 t,2(0),w(t) <0

because w € D;. Therefore we have

g(t. x4 (1))

= g(30) + { 2 (1,2(0)),2)0) ~ 2(0)) + o(lh0) — ZO))
= gt 5(0) + ((1,3(1)), 2h1) — (1) — hun(1))

{92 2(0)),un(0)) + ol 7R () — 2(2))
N(o(h) + M - o(h)) = hp(1 — \) + o(h)
= h(N(e(h) + M - e(h)) — p(1 — \) + e(R))

where e¢(h) — 0 when h converges to 0 and

99, -
N S P GEAON

ond case: ¢ € [to. T\ S;. Set

K;= sup g(t,z(t)) <0.
tG[t(),T]\Si
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Then
9(t, 24 (1))

. _ 89 _ A - A _

= g(t,3(t) + (G2t 2(0),2(t) = (1)) + o(lleh(t) - #(O)])

< Ki+ N(o(h) + M - o(h) + hllwx(to) + Rllw) [l (T = t0)) + o(h).

From the above two cases, for all ¢ € [tg, T}, for all h > 0 sufficiently
small,

g(t, (1)) <0,
ie.,
Iﬁ € S[‘io,ﬂ(l‘ﬁ(to)).

This and the fact that A~
wx(T) = 2w(T)+ (1 - Nw(T)
€ Tro(r)(Z(T)).
Therefore by taking limit when A converges to 1, we have
w(T) € Tro(ry(Z(T))

because Tgq(1)(Z(T)) is closed. a

— w), uniformly imply that

LEMMA 2.2. A is dense in A for the topology of uniform convergence.

Proof. Let w € A. If we prove that there exists a sequence w; € A
such that w; — w, the proof ends. Let v(s) € Ty (s z(s),u(s)) (T’ (5)) be
such that

() = L (5,2(s), a()wls) + (s)
> 0 it fols)l >4
if ||u(s)l| > 1,
vils) = { v(s) otherwise.
Then

vi(s) € Ty(s,2(5),0(s)) (T (8))-
Consider the solution w; of the system
{ wi(s) = §(s,8(s), a(s)wi(s) + vils), s € [to, T
wi(to) = w(to).

Note that

w; € fi
and

lvi = vl[Lr — 0.
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By Gronwall’s Lemma, we can show that w; converges uniformly to
w. O

LEMMA 2.3. Set

R(t) = {wER" %@im%xga},tes
R™. t € [to. TI\S

where a € R is fixed. If %(a‘:()) is cor.ltinuous and g—-z(t,a_c(t)) #0
for all t € S, then the set-valued map R is lower semicontinuous with
nonempty values.

Proof. Since

99 (¢ 7(t
“Hm@ﬂ» cR(t) Vtes,

git.z(t)]?
R(t) # 0 for all t € S. Furthermore

R(t) =R"™ Vi€ [to, TI\S.

Fix (7.z) such that x € R(7). If we prove that for all ¢ > 0, there
exists & > ) such that

(x+eBYNR(t) £ V[T—t]%S

where B is open ball with center 0 and radius 1, then R is l.s.c. at 7. If
T € [to. T]\S. there is nothing to prove. Fix 7 € S and € > 0. Set

1
M =m0
and
i Frem)
152 (r, (7)) |12
Then

s €x +0B.
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Since %(-, Z(-)) is continuous, if t € S is sufficiently close to 7, then
9g,, _ _ 99, _ 99, _ 99, _
(3 O)ws = 2 (ra(m)as+ (52t (1) - 52 (r,3(7) s
dg, 52 (7, %(7))
= o) (v - op )
52 (7, Z(7))|I>M
99, . dg
+(Fat.30) = 52 (r,2(r) ) s ~ @)
99, _ o9, _
+(5ot2) - 32 (ra(r) )
< a- 3 + 6% 462
1
= a+0(25— ).
Therefore if § is sufficiently small, then
0
5. (t2(0)as < a
ie., z5 € R(t). O

LEMMA 2.4. Suppose that gg—(‘, Z(+)) is continuous and g—g(t, Z(t)) #0
for allt € S. Then
360 € C(to, T; R)* such that
0 is positive, { is absolutely
continuous with respect to 6 and the Radon-
Nykodym derivative %(t) is contained
in { R+%(t,:ﬁ(t)) 0 —ae inS

{0} 0 — a.e. in [tg, T\S

D=={¢ € C(to, T; R™)*

Proof. Set
Q) = {$|<%(t,f(t)),x> <0} ifte S
R" ifté¢s.
Q is Ls.c. by Lemma 2.3, Q(¢) is nonempty, closed and convex for all
t € [to, T and
D = {w € C(to, T; R™) | w(t) € Q(t) Vt € [to, T)}.
Then 3 ]
D™ ={( € C(to, T;R™)" | (¢, w) <0 Yw € D}

and
- _ [ R %t z@1t) sites
Q) —{ {04]ta sité¢S.
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By [10, Corollary 6A}, we have the result. O

LEMMA 2.5. If %(t,f(t}) #0 forallt € S and %(-,i’(')) is continu-
ous, then 5
Int(D) # 0

for the topology of uniform convergence.

Proof. Set for all t € [to, T,
piy = { G a0)2) < -1} iftes
R" iftegS.

P is ls.c. by Lemma 2.3. Furthermore, for all ¢t € [to,T], P(t) is
nonempty, convex and closed. By Theorem [1, p.82], there exists w €
C(to, T; R™) such that
w(t) € P(t) Vt € [to, T,
ie.,
9g

%(t,.’f?(t)) cw(t) < -1 VEeS.

Hence

Int(D) # 0.

Set
X = Wl (ty, T; R™),
Y = L?(to, T; R™) x L*(to, T; R™).
Recall that X and Y are Hilbert spaces and consider the linear contin-
uous operator from X to Y:

(1xD): X =Y
where D denotes the differential operator.
LEMMA 2.6. Set
L={(z,y) € Lt T;R")x L¥to,T;R") |

U(s) € 2L (5,205, 5())2(5) + Tyguato e @ (5))
a.e. in [to, T|}.

Then

(3) X* D> AT =(1xD)*(LY)

where X* denotes the dual space of X and (1 x D)* denotes the adjoint
of 1 x D.
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Proof. See [7]. O

LEMMA 2.7. If 5 %9 2(t,z(t)) #0 for allt € S and ag( z(+)) is continu-
ous, then Uz 1D is dense in D for the topology of uniform convergence.
Hence U3 1D D because D is closed.

Proof. Let w € D. Set

M; = max {sup<—aﬁ<t,a-:<t>>, w<t>>,o}
teS; 8.’13
and s
g t
wi(t) = w(t) - ( ( )_) M; Vte [to,T]
lnfteS ”az( a:(t))||
Note that for all ¢ sufficiently large, 52 (¢, Z(t)) # 0 in S;. We see that

M; — 0 and w; € D; because for all t € 5,

99 99
t,z(t it < t)),w(t)) — M;
(30w < (52 2(), w(t)
< 0.

To end the proof, it is enough to observe that w; — w uniformly on
[to, T]. O

LEMMA 2.8. Under the assumptions of Proposition 2.1, AN(UD;) is
dense in AN D.

Proof. Let w e AN D. Set

= (1 — )\i)w + \w

where \; converges to 07. Note that w; € A and w; — w. If we prove
that w; € U°°1Dz, then the proof ends.

Since (24 (t,2(t)),w(t)) < 0 for all t € § and Z5(-,Z(-)) and w(-) are
continuous, for all € < T/\IT p, there exists j such that

L300, w(v) < ¢ Ve

Therefore, for all t € 5},
dg
(300 )
(1= )( (t (1)), w(t)) + )\z( (t z(t)), w(t))
(1-— )\Z)e - )\,p
0.

A A
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Therefore w; € D;. |

3. Main results

In this section, we assume that (Z, %) is optimal,

dg . .

—(,Z()) 18 tinuous,

61'( (+)) is con

and there exists @ € A and p > 0 such that
0
(3Lt.2),0()) < —p VL€ Ito, T].
X

Note that A # ) because 0 € A and that Int(D) # 0 by Lemma 2.5.
The next proposition is the main idea to obtain the necessary condi-
tions for optimality.

PROPOSITION 3.1. (Fermat’s Rule) If z is optimal, then

V(A1) € (Tron (+(T)))

Proof. Let v € Tge(1y(2(T)). Then there exist sequences h; — 0
and v; — v such that
z(T) + hjv; € RI(T) Vi.
Since z is optimal, we have
V(2(T) + hyv) > (2(T))
and thereby
(VH(=(T)), v) > 0.

Since v is arbitrary, we have

+
Vi ((T)) € (Thory (A(T)))
O

Now. we can prove the main theorem:

THEOREM 3.2. Suppose that (Z,u) is optimal. Then there exists
¢ € {0.1}, a positive Radon measure y, a measurable function v and an
absolutely continuous function p such that

i)

iy = OF ,
—p'(t) = E(t,a,(t),u(t)) (p(t) + /[to,t] V(s)du(.s)) a.e.
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if)
e (1) + /[ VNS, 0,500 )
= t v{s)d , f(t, z(t), u a.e.
) (o + [ vauts), 50,50,50)) e
’ R Q%(t, Z(t)) p—ae. inS
v(t) € { {(ﬁa ’ Z— a.e. in [to, T]\S
iv)
p(T) + / v(s)du(s) = —cV((T))
[ta,T]
v)
e+ uf) > 0
vi)
supp() C 5.

Proof. The proof consists of two parts.

Case 1: 0 € Int(D — A) in C(to, T;R™)

By Propositions 3.1, 2.1 and Lemma 2.8,
VeEI) © (T @@))
+
c (7(,4 N (u;?ilDz-))>
= (7(/1 N b)) Y
ie., forallw € AnND c C(ty, T;R™),
(V(E(T)),y(w)) = {(F"Vy(a(T)), w)
> 0.

It implies that
(4) Y*V(Z(T)) € (AN D)7,

Consider the set-valued map V : C(tg, T; R™) ~ C(to, T; R™) defined
by:

_ [ {z} ifzeD
V(a:)——{ O ifzéD.
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Then V is a closed convex process, i.e., the graph of V' is a closed convex
cone and Dom(V) = D. Since 0 € Int(D — A), we have Dom(V) — A =
C(to.T;R"™). Hence by Theorem 2.5.7 of [2],
(5)  (AnDy =(v(inD)) = (v(d) =vi(d)
where V* : C(tg, T:R™)* ~ C(tg, T;R")* is defined by:
reV*q) & VreClty, T;R") Vy € V(z), (rz) <{gy).
We have
(6) VY (AT) = AT + DT
Indeed,
ge VA
Jr € AT such that ¢ € V*~1(r)
3r € A" such that r € V*(q)
Jr € A such that Vz € C(to, T;R™) Yy € V(z), (r,z) < (q,9)
3r € AT such that Ve € D, (r—q,z) <0
3r € A* such that r —qg € D™
ge At + D",
Hence by (4), (5), (6) and Lemma 2.2,
(7) V*V(E(T)) € AT + D € C(to, T; R™)*.

Let £ € AT C C(to, T;R™)* and ji € DT C C(tp, T; R™)* be such
that

A R T

YVYP(E(T)) =€ + .
Note that
C(te, T:R™")* C X*.

Therefore we have

(8) (YVe(E(T), w) =+ w) YweX.
Lemma 2.6 implies that there exists (r,q) € L™ such that
9) §= (1 xD)(rq)

because

£eCty, T; R C X™.
(8) and (9) imply that for all w € X,
(7 H(ET)), w) = (1 x DY (rrq) + i ).
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Thus for all w € X,

T T T
/r(t)w(t)dt+/ q(t)w’(t)dt+/ w(t)di(t)

to to to
(10) = (V§(z(T)), w(T)).
On the other hand, by integrating by parts, we have

[ vttt =~ [ wy [ rrasan+ (ute, [ rcras)

to to 0

Set

T

to

Wy 2 (to, T;R™) = {w € W' (to, T;Rfw(to) = w(T) = 0}.
If we define 87 and Gy by: for all ¢4 <t < T,
Bi(t) = i ([to, t])
and
Ba(t) = i~ ([to, t])

(where T is the positive part of i and 4~ is the negative part of fi)
then for all w € W01’2(t0,T;R"),

T
/ w(t)dit)

to

_ / w(t)dit () — / w(t)dji™ (¢)
(to,T) (to,T)

— / zmmmm—/ w(t)dBa(t)
(to,T)

(to,T)

(11) - - /( L (B0) — a0t

T
(12) - - / (Ba(t) — Balt))w' (1)t

- _/:(/[M dﬂ*(s)—/{to’t] dﬁ_(s))w’(t)dt

- _/t:u/(t) /M dji(s)dt

(where we have (11) by [6, p.154] and (12) by [9, p.311]).
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Therefore (10) becomes, for all w € VVO1 ’Q(to, T;R"),

/t(,T 'u/’/(t)<Q(t) = /t: r(s)ds — /{to,t] dﬂ(s))dt —0.

By Dubois-Reymond Lemma ([4, p.42]), there exists a constant ¢g € R™

such that
t
q(t) = ¢ +/ r(s)ds —l—/ dii(s).
to [t07t]

Set
t
(13) p(t) = —co — / r(s)ds.
to
Then
p(t) = —r(t)
and

a(t) = —p(t) + /[ ).

On the other hand. by integrating by parts ([6, p.154]), for all w €
Wh2(ty. T; R") such that w(tg) = 0, we have

} 7
= / w(t)dji™ ( / w(t)dp™ (t)
ty to

- / (t)di+(t) + (w(T), i ({T}))
i()T)
/ w(t)dp™ (t) — (w(T), i~ ({T}))
(to.T)
_ / w(t)dB(t) + (w(T), i+ ({T}))
(t(,.:T)
_ / w(t)dfa(t) — (w(T), i~ ({T}))
(ty,T)
= _/(t . Ai(t)ydw(t) + (w(T), B1(T~) + a+*({T}))

+ / Bo(t)dw(t) — (w(T), B(T—) + i~ ({T}))
(to.T)
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= —/tTw’(t)/[t t]dﬂ(s)dt+<w(T),/[t T]dﬁ(t)>-

By (10), we have

( /tOTr(t)dt,w(T)>+ /tOTw’(t)<q(t)— /t:r(s)ds— /[t y di(s) ) e

~(@u(a(@), @) + ([ date), wm)

. [to,T]
= </ r(t)dt + cg — V(Z(T)) + / di(t), w(T)>
to Ito,T)
= 0.
Therefore we have
T
(14) / r(t)dt = ViH(a(T)) — co — /[ Cl

By (13), (14), Lemma 2.4 and the fact that i € Dt (ie., =3 € D7),
there exists a positive Radon measure fi; and a measurable function v

such that
dii(s) = — v(s)dii(s),
/M i(s) /H (s)dfia(5)
p(T) + / V(t)dfin (t) = —Vp(a(T))
[to,T]
and

R+ %3 (t,2(t)) ju —ae inS
u(t) € { o 71— ae. in [fo, TI\S.

Define a positive Radon measure p : B([tg,T]) — R™ by setting
VE € B([to, T]), w(E)=m(SNE)

where B([to, T]) is the o-algebra generated by the open subsets of [tg, T].
Then

and
supp(p) C S.
Now, recall that (r,q) € L*. For all v € L? which verifies

v(t) € Tz .uw) (1)),
we have
(0,v) € L.
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Therefore
T
(15) (). (0,0)) = / (a(t), v(t))dt > 0.

From the measurable selection theorem and the fact that f(s, Z(s), U(s))
—2'(8) C Ty(s,2(s),0(s)) (T'(8)), we deduce that
sup{(—q(s),£)I¢ € f(s,2(s), U(s)) — f(s,2(s),u(s))} <O a.e.
On the other hand,
F(s,2(s),u(s)) € f(s,2(s),U(s)),
hence
max{(—q(s), §)[€ € £(5,3(s),U(s)) — f(s,3(s),als))} =0 acc.,

therefore we obtain the maximum principle:

(—q(s), f(5,Z(s),u(s))) = max (—q(s), f(5,Z(s),u)) ae.

uel(s)
i.e.,
<p(s) + /[t ]u(t)du(t), f(s,as(s),a(s))>
= ufg[%)@(s)*‘/[to’s] V(t)du(t),f(s,x(s),u)> a.e.
Now, since
0 € Ty(s2(5)0(5)) (T (8)) Vs € [to, 7],
we have

of , . _ 9
(w, %(,w(),u())w) €L Ywe L”
Since (r,q) € LT, we have for all w € L2,

(), (w, 5L ¢ 20), a0 ))w)

= (r+ a0, 500 w)
> 0

therefore

r(t) =~ L (¢ 20), () q(t) ae.

ox
ie.,

~#(0) = 5 a0, a0y () + |

[tO ,t]

u(s)d,u(s)) a.e.
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Case 2: 0 ¢ Int(D — A) in C(ty, T; R")

We know that A # 0 and Int(D) 5 0. In this case Int(D)N A = 0.
By Separation Theorem (see [6, p.417]), there exists i € C(tg, T R )*
which is not equal to 0 such that

sup (fi,d) < inf (fi,a) <0

delnt(D) acA
because 0 € A. On the other hand, D = Int(D). Therefore
(16) sup(f,d)y < inf (ji,a) < 0.
deD a€A
Hence :
peD™.

Furthermore, by (16),

peAt =A%
Since i € D~ N At C C(to, T; R™)* C X*, there exists (7,4) € L such
that for all w € X,

T
/t wda(t) = (fw)
= (AxD)(d),w)
T T
(17) - /t (b (t)dt + / it (t)dt.

0 to
We can see that (17) is of the same form as (10) with the term
(V(z(T)), w(T)) replaced by zero. Hence, by replacing i by —j and
(r,q) by (7,§), we can obtain all the same conclusions as in the Case
1. ]
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