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HOLOMORPHIC EMBEDDINGS OF STEIN SPACES IN
INFINITE-DIMENSIONAL PROJECTIVE SPACES

E. BALLICO

ABSTRACT. Let X be a reduced Stein space and L a holomorphic
line bundle on X. L is spanned by its global sections and the
associated holomorphic map hz, : X — P(H"(X, L)*) is an embed-
ding. Choose any locally convex vector topology 7 on H(X, L)"
stronger than the weak-topology. Here we prove that hp(X) is
sequentially closed in P(HY(X,L)*) and arithmetically Cohen -
Macaulay. i.e. for all integers k > 1 the restriction map px :
H(P(H(X. L)"), Opipo .1y (K)) — HO(hi(X), Ony(x) () =
HY(X, L™%) is surjective.

1. Introduction

For any complex vector space V', let P(V') be the projective space of
all one-dimensional linear subspaces of V. If V is an infinite-dimensional
topological vector space, then P(V) is an infinite-dimensional complex
manifold. Let X be a finite-dimensional Hausdorff complex space count-
able at infinity and F a coherent analytic sheaf on X. The vector space
HY(X.F) has a natural topology for which it is a nuclear Fréchet space
(see 2], Th. 9 at p. 240, for a proof that HO(X,F) is Fréchet and
Montel, [1], Th. 6 at p. 168, for a proof that H(X, F) is Fréchet). If
F is a line bundle and HY(X, F) spans F, then there is a holomorphic
map hr : X — P(HY(X,F)*), where H%(X, F)* denotes the topological
dual of HY(X.F). Since H(X, F) is nuclear and complete, it is semi-
reflexive ([3], p. 144). Hence P(H®(X,F)*) determines P(H(X, F)).
In this paper we prove the following results.
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THEOREM 1. Let X be a reduced Stein space and L a holomorphic
line bundle on X. L is spanned by its global sections and the associated
holomorphic map hy, : X — P(H%(X,L)*) is an embedding. Choose
any locally convex vector topology T on H°(X,L)* stronger that the
weak-topology. Then hy,(X) is sequentially closed in P(H°(X, L)*).

THEOREM 2. Let X be a finite-dimensional Stein space and L a holo-
morphic line bundle on X. L is spanned by its global sections and
the associated holomorphic map hy : X — P(H°(X,L)*) is an em-
bedding. Choose any locally convex vector topology T on H°(X, L)*
stronger than the weak-topology. Then hp(X) is arithmetically Co-
hen - Macaulay, i.e. for all integers k > 1 the restriction map py :
HO(P(HO(X, L)*), Op(rogx.1yey () — HO(hp(X), Op, ) (k) = HO(X,

L&) is surjective.

For a generalization of Theorem 1 to embeddings in Grassmannians,
see Theorem 3. For a generalization of Theorem 2 to non-complete
embeddings, see Theorem 5. We also prove that the embedding hr(X)
is extremely twisted (e.g. it has no inflectional point) (see Theorem 4
and Remark 2).

2. The proofs and other related results

LeEMMA 1. Let X be a Stein space and L a holomorphic line bundle
on X. L is spanned by its global sections and the associated holomorphic
map hy, : X — P(H°(X, L)*) is an embedding

Proof. L is spanned by its global sections by Cartan’s Theorem A
(2], th. 13 at p. 243). Fix P € X and let Zp x denote the ideal sheaf
of P in X. The coherent ideal sheaf (Zp x)? defines a non-reduced zero-
dimensional analytic subspace Z of X such that Z,.q = {P}. Z is called
the first infinitesimal neighborhood of P in X. The restriction map
p: HYX,L)— H%Z,L|Z) is surjective because H'(X,Z; ® L) =0 by
Cartan’s Theorem B ([2], Th. 14 at p. 243). The surjectivity of p is
equivalent to the fact that hy, is a local embedding at P. Now fix Q € X
such that Q # P. Since H'(X,Z{p o} ® L) = 0 by Cartan’s Theorem B
([2], Th. 14 at p. 243), we have h(P) # hr(Q). Hence hy, is injective,
too. O

Proof of Theorem 1. By Lemma 1 L is spannec. by its global sec-
tions and Ay is an embedding. Assume the existence of a sequence
{hL(Pn)}n>0 in h(X) converging to Q € P(HO(X,L)*)\hr(X) and
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choose f € HY(X.L)*\{0} representing (). Since the support, Z, {P,}.>0
is a discrete and infinite set in X and X is Stein, there is a holo-
morphic map g : X — C such that lim, ;o |g(P,)| = +oc. Thus
HY(X.I; ® L) = 0 by Cartan’s Theorem B ([2], Th. 14 at p. 243).
Thus the restriction map HO(X, L) — H(Z, L|Z) is surjective. Hence
there is s € HY(X, L) such that s(P,) # 0 for every n. Since both s and
gs are holomorphic sections of L, f(gs) and f(s) are complex numbers.
Since {hr(Py)}n>0 converges to ¢, we must have f(s) = 0. Let A be the
set of all @ € HY(X. L) such that « does not vanish at all except finitely
many poinuts of Z. Taking a subsequence of the sequence { P, },>0 we see
that f(a) = 0 for every o € A. We claim that A is dense in HO(X, L).
Indeed. take any o € A and 8 € HY(X, L)\ A. For every z € C\{0} we
have /3 4+ za € A, proving the claim. Since f(u) =0 for every p € A by
the first part of the proof, we have f = 0, contradiction. O

REMARK 1. Let X be a complex space and L a line bundle on X
spanned by its global sections. Since HY(X, L) is semi-reflexive ([3], p.
144). the set of all closed hyperplanes of P(H%(X, L)*) may be identified
with P(HY(X.L)). For any closed hyperplane H of P(H°(X, L)*), say
corresponding to u € P(H(X, L)), the set hy'(H N hy,(X)) is the zero-
locus of any f € H%(X, L)\{0} representing u. Hence H N hp(X) =0
for some closed hyperplane H of P(HY(X, L)*) if and only if L has a
nowhere vanishing section, i.c. if and only if L = Oy.

LEMMA 2. Let X be an n-dimensional Stein space and L a holomor-
phic line bundle on X. Then there is a linear subspace W of H*(X, L)
such that W spans L at each point of X and dim(W) < n + 1.

Proof. We will prove the same assertion even when X is not reduced
because it is easier to prove by induction on n this more general state-
ment. If n = 0, then L is trivial and the constant function 1 spans L.
Assume n > 1 and that the result is true for all (n — 1)-dimensional
Stein spaces (even the unreduced ones). There is s € H%(X, L) such
that the zero-locus, D, of s is of dimension at most n — 1. The section
s spans L at each point of X\D. In particular s spans L at each point
of X if D ={). Hence we may assume D # §. Since D is closed in X,
D is a possibly non-reduced Stein space of dimension at most n — 1. By
the inductive assumption there are ay,...,a, € H%(D, L|D) spanning
LID at each point of D. By Cartan’s Theorem B ([2], Th. 14 at p. 243)
there is s; € HY(X. L) such that s;|D = a;. Since ay,...,a, span L|D,
Slannad sp span L at each point of D. Hence s, sy, ..., s, span L at each
point of X, concluding the proof. O
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Proof of Theorem 2. The last isomorphism is true because hy, is an
embedding. The map p; is surjective because hy is the embedding as-
sociated to the complete linear system H?(X, L). Hence py is surjective
for some integer £ > 0 if and only if the map o1 : HO(X,L)® --- ®
H%(X,L) — HO(X, L®) is surjective; here the domain of oy, is the al-
gebraic tensor product of k copies of H(X, L). By Lemma 2 there is a
finite-dimensional linear subspace W of L such that W spans L at each
point of X. Hence the evaluation map o : Ox @ W — L is surjective.
We have an exact sequence

(1) 0 — Ker(a) =Ox®W - L—0

and hence Ker(a) is a coherent analytic sheaf on X. Thus H(X,L ®
Ker(a)) = 0 by Cartan’s Theorem B. Thus by tensoring (1) with L
we obtain the surjectivity of the multiplication map W ® H%(X,L) —
HO(X, L®2%). Thus oy is surjective. Now assume k > 3 and that oj_1 is
surjective. Since H!(X, L®* ® Ker(a)) = 0 (Cartan’s Theorem B), by
tensoring (1) with L®*~1) we obtain the surjectivity of the multiplica-
tion map W ® HO(X, L®*-1) — HO(X, L®). Since oy_; is surjective,
we obtain the surjectivity of o, concluding the proof by induction on
k. O

THEOREM 3. Let V be a topological vector space and X an n-
dimensional Stein space embedded in P(V). We do not require that
the embedding is a closed embedding. For all integers k > 1, let
Pk : HO(P(V),OP(V)(k)) — H%X,0x(k)) denote the restriction map.
Assume that Im(p1) is a finite-codimensional linear subspace of H%(X,
Ox (1)) and call z its codimension. Then dim(Coker(py)) < x(n+1)F1
for every k > 2.

Proof. By Lemma 2 there is an (n + 1)-dimensional linear subspace
W of H9(X,0Ox(1)) spanning Ox(1). Use the exact sequence (1) as
in the proof of Theorem 2 to show that dim(Coker(py)) < dim(W) -
dim(Coker(pg—1)) for every k > 2. Hence we conclude by induction on

. O

THEOREM 4. Let X be a finite-dimensional Stein space and L a holo-
morphic line bundle on X. Let hy, : X — P(H?(X, L)*) be the embed-
ding associated to L. Then for every zero-dimensional subscheme Z of
X supported by finitely many points of X the linear span (hp(Z)) of
hr(Z) has dimension h%(X,0z) — 1.

Proof. The equality in the statement means that H°(X,Zz ® L) has
codimension h°(X0z) in H°(X, L) and this is true because L|Z = Oy
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by the finiteness of Z,..q and H'(X,Zz ® L) = 0 by Cartan’s Theorem
B ([2]. Th. 14 at p. 243). 0

REMARK 2. The last statement of Theorem 4 means that the em-
bedding hj; of X is extremely twisted. For instance, no three points of
hr(X) are collinear and for every length three subscheme Z of X sup-
ported by one point of X the scheme hr(Z) spans a plane. The last
assertion of Theorem 4 means that no point of hAz(X) is an inflectional
point.

REMARK 3. Let X be any Stein space with at least three points. It is
very easy to construct embeddings of X into a projective space P (V) for
which the statement of Theorem 4 is false; of course, for any such em-
bedding the restriction map p1 : H(P(V), Op(1)(1)) — HY(X,0x(1))
cannot be surjective. Here we construct such examples with Coker(p;)
finite-dimensional. We will also take as Ox(1) any holomorphic line
bundle on X. Fix a holomorphic line bundle L on X and three distinct
points P,@Q and R of X. The linear space H(X, Zipq,ry © L) spans
L outside {P,Q, R} (see the proof of Lemma 1). By Cartan’s Theo-
rem B the linear space H(X, Iipo,ry ® L) has codimension three in
H°(X.L). Choose s1,50 € H°(X,L) not vanishing on {P,Q, R} and
separating P, and R. Let W be the closed codimension one linear
subspace of H°(X, L) spanned by s1,s2 and H*(X,Zpgr ® L). It is
easy to check that for general sp, s the linear space W induces an em-
bedding hr, w : X — P(W). In this embedding the three points P, Q, R
are mapped onto three collinear points. Now assume dim(X) > 0 and
fix a smooth non-isolated point P of X. We will construct an embed-
ding hyy : X — P(V) of X such that hyy(P) is an inflectional point
of hv(X). Let Z;, 1 < i < 3, be the zero-dimensional analytic sub-
space of X with (Zp x)" as its ideal sheaf. Hence (Z;)req = {P} and
length(Z;) = ("til—l), where n is the dimension of X at P. By Car-
tan’s Theorem B the restriction maps «o; : HO(X,L) — H%(Z;, L|Z;)
are surjective. Let V be the linear subspace of H(X, L) spanned by
HY%(X,T,, ®L), asection of H*(X, L) not vanishing at P and n sections
of H°(X, L) vanishing at P and inducing local coordinates around P.
Since HY(X,Zz, ® L) induces an embedding of X\{P}, it is easy to
check that hy v is an embedding. By construction hyr v(Z3) = hr v (Z2)
and hence hp, v (P) is an inflectional point of hy v (X).

3. The Grassmannian
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Fix an integer r» > 1, a complex space X, a rank r holomorphic vector
bundle £ on X and a closed linear subspace W of H%(X, E) such that
W spans E at each point of X. The pair (F, W) induces a holomorphic
map hgw : X — G(r,W), where G(r,W) is the Grassmannian of all
closed codimension r linear subspaces of W. If W = HY(X, E), write
hg instead of hgw. G(r,W) is a smooth complex manifold. There is
a natural rank r holomorphic vector bundle @ on G(r, W), often called
the tautological quotient bundle of G(r,W). The vector bundle @ is
spanned by its global sections and H(G(r, W), Q) = W.

The proof of Lemma 1 gives the following result.

LEMMA 3. Let X be a Stein space and E a rank r holomorphic
vector bundle on X. Then E is spanned by its global sections and the
holomorphic map hg : X — G(r, H*(X,W)) is an embedding.

Since h%(Q|hg(X)) = E, the proof of Theorem 2 gives the following
result.

THEOREM 5. Let X be a Stein space and E a rank r holomorphic vec-
tor bundle on X . For every integer k > 1 the map H°(G(r, H*(X, E)),
Sk(Q)) — HY(X, S*(E)) is surjective.
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