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ON FUZZY STOCHASTIC DIFFERENTIAL EQUATIONS

Jal Heui Kim

ABSTRACT. A fuzzy stochastic differential equation contains a fuzzy
valued diffusion term which is defined by stochastic integral of a
fuzzy process with respect to 1-dimensional Brownian motion. We
prove the existence and uniqueness of the solution for fuzzy stochas-
tic differential equation under suitable Lipschitz condition. To do
this we prove and use the maximal inequality for fuzzy stochastic
integrals. The results are illustrated by an example.

1. Introduction

The theory of fuzzy ordinary differential equations has been exten-
sively developed in conjunction with fuzzy valued analysis [4, 9]. The
techniques used have been closed related to set valued integrals [1] and
set valued differential equations [7].

Random sets have proved valuable in a wide class of estimation and
imaging problems. see [2] as a sample from a very large literature. A nat-
ural extension, from which many applications follow, was taken by Puri
and Ralescu [12]. Further advances have been made in this area by Ban
[3] and Stojacovit [13], where important stochastic concepts, such as set
valued conditional expectation and martingales, have been exploited in
a fuzzy context. Stochastic integrals, in the It6 or Stratonovich sense
(see [11] for a lucid and concise treatment), have proved extraordinarily
useful on the study and practical application of stochastic processes and
differential equations to a wide variety of fields, including engineering
and finance. Natural extensions to set valued situations, where further
incertitude is introduced, have been made by Kim and Kim [10]. Very
recently, Jung and Kim [8] have developed a more usable definition for
which. like the single valued case, the maximal inequality holds under
some assumptions for integrands. These advances also made it possible
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to define a fuzzy stochastic integral, thus extending the class of uncer-
tain processes which could be studied. This new tool opens the way to
consider fuzzy stochastic differential equations.

This paper develops a theory of existence and uniqueness of the so-
lution for such systems, and demonstrates how the technical machinery
can be applied to uncertain dynamical problems. The techniques are
illustrated by a worked example involving stochastic logistic growth.
More precisely, in this paper we consider the following fuzzy stochastic
differential equation
(1) { dX(t) = F(t, X(t))dt + G(t, X (t))d B,

X (0) = Ty,

on a complete probability space (£, A, P) with a filtration (A¢):>0, where
F :[0,00] x Fo(R) — F¢(R) and G : [0,00] x F,(R) — F(R). Here
F.(R) is the family of all fuzzy sets of which level sets are nonempty
closed convex subsets of R, the set of all real numbers, and (B;):>o is a
1-dimensional Brownian motion. The question of existence of a solution
of (1) is interpreted to be process (X(t)):>0 satisfying the stochastic
integral equation

(2) X(t) =20+ /Ot F(s, X(s))ds +/0 G(s,X(s))dB, a.s.

Here, the second term on the right-hand side of (2) is the integral of
which level sets are set valued integrals of level sets of F(s, X (s)) in the
sense of Aumann [1] and the third term is the fuzzy stochastic integral
which will be defined in Section 2. We will prove the uniqueness and
existence of the solution of (1) under some Lipschitz conditions for F' and
G. Because of the lack of the martingale property for fuzzy stochastic
integrals and of the distributive law for fuzzy sets, we may need some
additional conditions to study fuzzy stochastic analysis unlike usual real
valued case. So it is meaningful to find these additional conditions which
is, of cause, trivial in real valued case (see Theorem 2.3 and 3.2).

The organization of this paper is as follows. In Section 2, we state
some useful results of set valued and fuzzy stochastic integrals. In Sec-
tion 3, we prove the existence and uniqueness of the solution of fuzzy
stochastic differential equation (1). Section 4 gives a worked example
of a fuzzy stochastic differential equation of which solution is given con-
cretely.



On fuzzy stochastic differential equations 155
2. Fuzzy stochastic integrals

Denote by K(R) the family of all nonempty closed subsets of R and
let K(R) be the class of all such sets which are also convex. For any
A, B € K(R) , we define

dp (A, B) = max {sup d(z, B), sup d(y, A)}
€A yeb

where d(z. B) = infcp |v — y| and
ANl = dr (A4, {0}) = sup x|
r€A

Let LP(Q2. A:R) be the space of all real valued random variables & such
that ||h||; = E[|h|P] < oc, where Elg] is the expectation of a random
variable g. A K(R) valued random set F is called LP-bounded if ||| F||| €
LP(Q2, A:R). Let LP(Q A, KC(R))(resp. LP(2, 4;K.(R))) be the set of
all K(R) (resp. K.(R)) valued LP-bounded random sets. If A and B
are bounded, then dgy (A, B) is the Hausdorff metric of 4 and B.

Let F(R) denote the family of all fuzzy sets u : R — [0, 1] such that
the level set(or a-cut) [u]* = {z € R:uf{z) > a} €e K(R), for0 < a < 1,
and [u]® = Uye(o,1)[u]* is bounded. For all 0 < a <8< 1

[ul? € [u]*  [u]’.

For two fuzzy sets u. v € F(R)., we denote u < v if and only if [u]* C [v]*
for every o € [0.1]. Let F.(R) denote the family of all fuzzy sets in F(R))
with level sets contained in K.(R). Define a metric D on F(R) by

D(uv U) = Ssup dH([u]a7[v]a)'
a€0,1]

For u; € F(R), i=1,2,3.4, the followings are well known.

(3) D(U1 + usz, uo +U3) = D(ul,uQ)
and
(4) D(uy + uz, ug + uq) < D(uy, u2) + D(ug + uy).

A fuzzy random variable is a measurable function X : Q@ — F(R). A
fuzzy random variable X is called LP-bounded if there exists a function
h € LP(SL A;R) such that [J|[X(w)]%]] < h(w) for a.a. w € Q. Let
LP(Q; F(R)) be the set of all LP-bounded fuzzy random variables and
LP(€; Fo(R)) be the set of all LP-bounded fuzzy random variables whose
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level sets belong to K.(R). For X1, X, € LP(Q; F(R)), they are consid-
ered to be identical if for all o € (0, 1], it holds [X;]* = [X3]* a.s.. For
any A-measurable (R) valued random set F', we define

SE={felP(QLAR): flweEF(W aa weQ}, p=1,2,3,....

The expectation of a fuzzy random variable X, denoted by E[X] also,
is a fuzzy set such that, for a € (0,1],

[EX]]* = £[[X]*] = {Elg] : g € Sixpe }-

Let F be a K(R) valued random set satisfying |||F||| € L'(2, A;R) and
B be a sub-o-field of A. Hiai and Umegaki [6] defined the conditional
expectation E[F|B] of F given B by

Seiri = cHELfIB]: f € Sg}.

Stojakovi¢ [13] showed that for any X € L'(Q; F(R)) and o-field B C A,
there exists a unique fuzzy random variable ® € L'(Q, B; F(R)) such
that for a € (0, 1],

[®]* = E[[X]Y|B] as..

The fuzzy random variable @ is called the fuzzy conditional expectation
of X given B and denote it by E[X|B]. Let LP(R) be the set of all
Ai-adapted measurable R valued stochastic process (h(t))i>o satisfying
for every t > 0, E[fot [h(s)|Pds] < co. A K(R) valued set valued process
(F(t))e>0 is called £2-bounded if (|[|F(t)|||)i>0 € LP(R). Let LP(K(R))
be the set of all K(R) valued A;-adapted measurable set valued pro-
cesses.

We call (Yy)i>0 a fuzzy stochastic process if each level set [V is a
nonempty, closed and convex set valued random variable and each Y; is
a fuzzy random variable. A fuzzy stochastic process (Y;);>o is called
Ai-adapted if for each t > 0. Y; is A;-measurable, and measurable
if Y is Bjg ) ® A-measurable. A fuzzy stochastic process (V;)i>o is
called £2-bounded if there exists a process (h(t));>0 € L*(R) such that
Ye (@))% < h(t,w) for a.a. (t,w). Let L2(F.(R)) be the set of
A;-adapted measurable £2-bounded F.(R) valued fuzzy processes. A
fuzzy stochastic process (Y;);>0 is called a fuzzy martingale (resp. sub-
martingale, supermartingale) with respect to A, if Y; is L'-bounded,
Ai-measurable and for ¢t > s, E[Y;|As] = Y; (resp. >,<) a.s.. By the
definition of fuzzy conditional expectation we can see that (¥;)i>¢ is a
fuzzy martingale if and only if ([Y]$);>0 is a set valued martingale for
any o € [0,1].
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A set H of real valued random variables is called decomposable with
respect to Aif f1,foe Hand A€ Aimply 14f; +14cf2 € H, where 14
is the indicator function of A. For any set I' in LP(£2, 4; R), we denote
by del’ the smallest closed set in LP(2, A; R) which contains I' and is
decomposable with respect to A.

Let (F(t))i>0 € L*(K(R). Jung and Kim [8] defined a set valued
stochastic integral I{F)(t) = fot F(s)dBs of (F(t))>0 with respect to a
1-dimensional Brownian motion (By)i>¢ by

J() F(s)dB, (.At =de {/ f S)dB ( ( ))tZO € 82((F(t))t20)}

for all t > 0. Here S?((F(t)):>0) is the set of all stochastic processes
(f(t))es0 € L*(R) such that f(t w) € F(t,w)forallt >0and a.aw € Q.
And they proved that fo s)dB; is a random set in L?(Q, Ay; K.(R))
for every ¢t > 0.

For some (fi(t))i>0, (f2(t))e>0 € L*(R), let (F(t))z0 € L2(Kc(R))
be given by F(t) = [f(t), f(t)], where f(t) = fi1(t) and f(t) = fo(t) if
f1(t) £ f2(t), and f(t) = f(t) and f(t) = fi(t) if fo(t) < f1(¢). That s,
(F(t))t>0 is a set valued process defined by the set between (fi(¢))>0
and (f2(t))¢>o0. In this case we will say that (F(t))i>0 is defined by

() F(t) = (f1; f2)(1).

Then we see that I(F') (fo f1(8)dBs; [, fo(s)dBs)(t). Note that
(I(F)(t))t>0 does not batlsfy the martingale property

By the same method as Theorem 4.6 in [10}, we can see that, for
any (Y (t))i>0 € L2(F.(R)), there exists a unique fuzzy random variable
](Y)(t) e L?(Q, Ay; F.(R)) such that for all « € (0,1], [J(Y)]*(t,w) =
([5IY]()dBs)(w) a.a. w € Q. Moreover, (J(Y)(t))e>0 is an Ap-adapted
measurable fuzzy stochastic process.

DEFINITION 2.1. We call above J(Y)(t) a fuzzy stochastic inte-
gral of (Y (t))i>0 with respect to (Bt)i>0 and denote it by J(Y)(t) =
[3 Y (s)dBs.

Clearly [J(Y)]*(t) = I([Y]*)(¢). Since (L([Y]¥)(t))s>0 is not a set val-
ued martingale, (J(Y)(¢))i>0 is not a fuzzy martingale. So it is difficult
to deal with fuzzy stochastic integrals unlike usual real valued case.

ExamMpLE 2.2. Let (¢;d)s denote the symmetric fuzzy number with
the interval [c,d] as its support (see [4]). For (fi(t))i>o0, (f2(t))i>0 €
L?(R) satisfying fi(t) < fo(t) for all t > 0 as., define (Y(t))>0 €
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L2(F(R)) by Y(t) = (f1(t); f2(t))s. We can calculus its level sets as
follows.

VI = (A0 + 50— L), f2) = S(f2(t) = AE)]
(6) = [yt Hat), acp)
Hence J(Y)(t) = [{ Y (s)dB; is given by
[J(Y)]“(t) = (Y]
= (] wtos9)dB; | Flaso)aB)(0),
From now on, let T be any given real number. The following result
is the maximal inequality for fuzzy stochastic integrals.

THEOREM 2.3. Let (X (t))i>0 and (Y (¢))i>0 be in L2(F.(R)) and
satisfy that for a € [0,1], ([X]*(t))t>0 and ([Y]*(¢))>0 are defined by

(X]*(t) = (ff" f5)(t) and [Y](t) = (97 95)(t) for some (f{*(t))i>0 and
(9%(t))i>0,i = 1,2 with the the following inequality

([ st~ seeonas.) ([ 60 - gitonas.) 20
t € [0,T] a.s.. Then it holds that for all t € [0,T],
[OiligtD? (/ X(s dBS,/ Y(s)dB )]
< 4E [D2 (/O X(s)st,/O Y(s)st>].

Proof. Since for each i = 1,2, ( f; ff‘(s)st>t>o is continuous As-

martingale, there is a constant ¢; > 0 such that with probability one,

/tff(s)st <e¢, tel0,T)]
0

) is

Hence (—cl + fot ffé(s)dBS)te[o T (resp. (02 + fot f$(s)

non-positive (resp. nonnegative) martingale. Put

BS) te[0,T)

t t
I £5)() = [—c1+ [ @asac | f@(s)st]

[m{(#), m3 (®)] -
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Then we have

c2( o fa mg(t) —mi(t m$(t) + mg(t
(7) Ic'f(f1af2)(t)=( 2()2 (t) 1()2 2())
Since (3 (mg(t) — mg(t))) 1 [0.T] is a nonnegative 4;-martingale, by The-

[-1,1] + (

orem 2.6 in [8], the first term on the right-hand side of (7) is a set val-
ued Ai-martingale. And (3 (m$(t) +m3(t))) +e[0,T] is an A;-martingale.

Thus (I2(f7, fé")(t))te[0 T is a set valued A;-martingale. By the same

argument, we can check that (Igf (g¢, ggxt))te[o,T] is a set valued As-
martingale for some constants dj,ds > 0. Let k; = max(c;, d;),i = 1,2.
Then (Iff(f{‘ fé‘)(t))te[oﬂ and (I,’:f (gf‘,gg‘)(t))te[O’T] are set valued
A-martingales trivially. Using Theorem 2.6 in [5], a real valued process
(dn (I,ff(f{’, fg)(t),],f’f (g‘f‘,gﬁ)(t)))te[oﬂ is a submartingale. Hence,
by the definition of D and our assumption, we have for 0 < s <t < T,

E -D (J(X)(t), J(Y)(t)) ‘ As]

= E| sup dy (I([X]“)(t),f([Y]“)(t))lAs}

| x€[0,1]

= £ swp du (1207 )0, 12 (6. 95)0) ]A]
| x€[0,1]

v

o B [dn (02 )0 1565 5)0) | A

a€l0,1]
sup dyr (152 (F7, £5)(s), 12 (7 95)(9))
a€cl0,1]

= sup dy (I{{X]*)(s), I([Y]?)(s))
a€0,1]

= D(J(X)(s), J(Y)(s)).
This shows that (D (J(X)(¢), J(Y)(£)));e[o,r) is @ real valued submartin-

gale. Using the Doob maximal inequality {14, Theorem 1.2.3], the proof
is complete. 0

v

REMARK 2.4 In [8], Jung and Kim have proved the maximal inequal-
ity for set valued stochastic integrals. To do this they assumed that the
maximal and minimal selections of set valued stochastic integrals are
bounded on R. But from the first part of the proof of Theorem 2.3, we
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can see that this assumption is not necessary. And, for example, in the
case that for any given ¢ > 0, f&(t) = cg{*(t),% = 1,2, we can see that
the inequality in Theorem 2.3 is satisfied.

THEOREM 2.5. Let (X(£))i>0,(Y(t))i>0 € LYF.(R)). Then, we
have

E [Dz (/OtX(s)st,/OtY(s)stﬂ <E [/Ot DQ(X(S),Y(S))(ZS}.

Proof. By the definition of D, we have for all £ > 0

E ;DQ </0tX(s)st,/otY(s)st)]

= B swp & ( | s, [ t{Y]a(s-)st)

| «€[0,1]

sup / d%([X]a(s),[Y]“(s))ds}

| «€[0,1] JO

IN
&

IA

E/ sup d%([X]a(S),[Y]“(S))dS}

0 a€l0,1]

- B[ [ D ven e,

where the first inequality is a result in [8]. The proof is complete. O

3. Main results

In this section we prove the existence and uniqueness of the solution
of fuzzy stochastic differential equation (1). The solution of (1) is defined
as follows.

DEFINITION 3.1. By a solution of fuzzy stochastic differential equa-
tion (1), we mean a F.(R) valued fuzzy process (X (t));>o defined on
(Q, A, P) with a reference family (A:);>0 such that

(1) there exists a 1-dimensional Brownian motion (B ):>o with B(0) =
0 a.s.,

(i) (X(t))e>0 is Ai-adapted and continuous in ¢ a.s., i.e., with prob-
ability one, D(X (¢t + h), X(t)) — 0 as h — 0,

(iii) (X (¢))e>0 and (By)i>o satisfy (2).

And we say that the pathwise uniqueness of solutions for (1) holds if
whenever (X (t));>0 and (X'(t))s>0 are any two solutions defined on the
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same probability space with same reference family (A;)¢>0 and the same
1-dimensional Brownian motion (B;)i>o such that X(0) = X'(0) as.,
then X (t) = X'(t) for all t > 0 a.s..

The following theorem is our main result.

THEOREM 3.2. Assume that F,G : [0,00) x F.(R) — F.(R) satisfy
the following conditions;
(i) there exists a K > 0 such that

DX(F(t,2), F(t,y)) + D*(G(t,x),G(t,y)) < KD(z,y),

HEF (P + NG, 2)l? < K1+ []]l2]°]1)

for all z,y € F.(R) and t € [0, 00),

(ii) for any (Y (t))i>0 € L2(F.(R)), a process (G(t,Y (t))i>0 satisfies
that for all o € [0, 1], ([G(-, Y (-))]*(¢))t>0 Is defined by [G(-, Y (:))]*(t) =
(g?’y; gg"y>(t) for some (g?’y(t))tzo,i =1,2,

(iii) for any (Y1(¢))e>0, (Y2(t))i>0 € L2(F:(R)), it holds that

(fasr-amome) (f[asmo - wus) >0

for all t > 0 a.s..

Then a solution (X (t))s>o of the fuzzy stochastic differential equation
(1) exists and the pathwise uniqueness of solutions holds.

Proof. Let T > 0 be any given. Define X((t) = o a.s. for all ¢ € {0, T.
Then by the condition (i), we have

T
B| [ G0l 1P| < TR (14 B [acPl1P]) < o0
0

and hence (G(t,z0))i>0 € L2(F:(R)). By the definition of the fuzzy
stochastic integral, fot G(s,z0)dBs is defined. And thus we can define a
continuous stochastic process

t t
Xi{t) =x0+ / F(s,zo)ds + / G(s,20)dBs
0 0

with E[||[[X1(£)]°]]|?] < oo for all ¢ € [0,T]. Now assume that continuous
processes

t t
X,(1) :m0+/ F(,S,Xi_l(s))ds—i—/ Gls, X;—1(s))dBs, i = 2,3,....m,
0 0
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are defined and these satisfy supg<;<7 E[|||[Xi(t)]°]||*] < 0o. Then by
the condition (i),

E [/ G (s, Xu(NI°NI?| < TK (1+ sup HI[Xn(t)]OH|2> <00
0 0<t<T

and hence (G(t, Xn(t)))i>0 € L2(F-(R)). This shows that a fuzzy sto-
chastic integral fg G(s,Xn(s))dBs can is defined. And hence we can
define a continuous stochastic process

t t
(8)  Xnea(t) =20 + /O F(s, Xu(s))ds + /0 (s, X (s))dBs.

By mathematical induction, we obtain a sequence {(X,(t))i>0}, n =
1,2,..., of stochastic processes in £L2(F,(R)). By Theorem 2.3, Theorem
2.5, the equality (3), the inequality (4) and our assumptions, it holds

E sup D2 (Xn(t)7Xn+l(t)):|
0<t<T
5 t t ‘
< 28| swp D ( /O F(s, Xn_1(s))ds, /0 F(S,Xn(s))ds>
t t

+2E Oilt;gTDQ < /0 G(s, Xn_1(s))dBs, /0 G(\s,Xn(s))st)
< oTE [ / D2 (F (s, X (5)), Fls Xn(s)))ds]
—_ 0 bl b) b

+8E [/T D? (G(s, Xn-1(5)),G(s, Xn(s))) ds}

< QT+8)K / [sup D2(Xn_1(s),Xn(s))] dt

0<s<t

t1 tn—1
< KT/ / / [ sup Dz(mo, Xl(S)):| dtn s dtgdtl,
0<s<ty

where K1 = (2T + 8)K. By the same argument as above, we have

E [ sup D?<xo,X1<s>)] < Ko (11| [zalI12).

0<t<ty

Thus we have

) Kn+1
E ,:OE?ETD (Xn(t),Xn+1(t)):l Smrn (1+|” [330] il )




On fuzzy stochastic differential equations 163

By Chebyshev’s inequality, we obtain

1
p (OzltlgTD (Xn(t), Xnt1(t)) > 2n+1>

Kp+t
(n+1)t°

< 4E { sup D? (Xn(t)aXn—i—l(t))} <C(T)
0<t<T

where C(T") > 0 is a constant depending only on zg and 7. By the fact
that F.(R) is a closed subspace of a complete metric space (F(R), D)
(see [13]) and the Borel-Cantelli lemma, we see that X, (t) converges
uniformly on [0, 7] with probability one. Since T' was arbitrary, X (t) =
lim, .~ X, (t) determines a continuous process which is clearly a solution
of (1). Now to prove the uniqueness of the solution, let (X (t))>0 and
(X'(t))t>0 be any two solutions of (1). Then by the similar calculations
as above, we have

E[D*X(t).X'(t))] <2K(1+T7) /t E [D*(X(s), X’(s))] ds
0

for all t € [0, T]. By Gronwall’s lemma, we obtain
E[D*(X(t),X'(t))] = 0

for all t € [0,T]. Hence, letting T" — oo, we have X (t) = X'(t) a.s. for all
t > 0. Since (X (t))i>0 and (X'(t))i>0 are D-continuous in t a.s., we can
conclude that X (t) = X'(¢) for all t > 0 a.s.. The proof is complete. [

4. An example

In this section we give a worked example of fuzzy stochastic dif-
ferential equation (1) of which the solution is given concretely. For
(f1(1))i>0, (f2(t))i>0 € L*(R) satisfying f1(t) < fa(t) for all t > 0 ass.,
define (Y ())i>0 € L2(F.(R)) by Y(¢) = (f1(t); f2(t))s as in Example
2.2. In (1), take F(t,z) = —z and G(t,z) = Y (¢). Then we get the
following fuzzy stochastic differential equation.

dX(t) = —X (t)dt + Y (£)dBy,
©) { X(0) = Xo,

where [Xo]* = [¢(a), ¢(e)] for any « € [0, 1]. Since coefficients in (9) sat-
isfy the conditions in Theorem 3.2, there is a unique solution (X (t))¢>q
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of (9). This means that for any a € [0,1], ([X]*(¢))i>0 satisfies the
following set valued stochastic differential equation.

(10) { d[X ]“()——[X]a(t)dtJr[g(a;t),ﬂ(a;t)]dBm

t
[X]%(0) = [¢(a), ()],
that is,
(11) [(X]*(t) = [9(04),5(0!)]4‘/ —[X]%(s)ds
. 0 .
+</0 Yo s)st,/O T(a $)dBs) (1),

where y(a;s) and 7(o;s) are given by (6) in Example 2.2. Denote
[X]%(t) = [X(a;t), X(a;t)]. We will give the concrete representations
of X(a;t) and X(«;t). We can, without loss of generality, assume that
there is a & > 0 such that [} y(a; s)dBs <f0 a; 8)dB;s for all t € (0, 6].
Define two sequences {7;}i—1,2,.. and {0;}i=0,1,2,.. of stopping times by

og = 0,

71 = inf

t t
t>0: / y(a; s)dBs > / 7(a; s)st} ,
0 0

t ¢
t>T: / y(a; s)dBs < / (o s)st},
0 0

ol = inf{
. ¢ ¢
7 = inf {t > 051 / y(o; s)dBs > / y(a; s)st} ,1=2,3,...
0 0

o; = inf

First we consider the case ¢t € [0, 71]. Since fg y(a; s)dBs < fot Y(a; s)dBg
for all t € [0,71], (11) is equivalent to the following equation

02 X = [ -
+ [g(a) + /Ot_y_(a;s)st,E(a) + /Ot 7(oy s)st] )
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Since ~[a,b] = [=b,—a] for all @ < b € R, X(a;t) and X (a;t) are the
solutions of the following stochastic differential system.

t t
13)  X(ait) =ela) - /0 X (s s)ds + /O (s 8)dB,,

(14) X(o;t) = ¢(a) _/0 X(ao; .9)ds+/0 7(o; s)dBs.

Rewriting (13) and (14) in the vector valued stochastic differential equa-
tion, we have

dX(a;t) = AX(a;t)dt + Y (a; t)dBy,
(15) { X(a:0) = Xo(a) t
where
o | Xlast) o | ulast) _ | e
Klost) = [ X(a:1) J Ylast) = [ o) ] Kole) = { o) ]
and

Since A?" = I and A?"*! = A for all nonnegative integer n, we see that

cosht —sinht }

tA _ . 3] =

Here I is the unit 2 x 2 matrix. The unique solution of stochastic dif-
ferential equation (15) is given by, for ¢ € [0, 1],

¢
X(a;t) = etAXO(a)—l-/ =4y (a; 5)d B,
0

t
= e'Xpla) + / 'Y (a; 5)dB,
0
_ gt (a) +f(f e *y(a; s)dBs
(@) + fy e*T(e; 8)dBy

The second equality holds from the fact that cosht + sinht = e’. From
the definition of X{«;t), we have

(16) X(ast) =¢ (g(a) + /Ot e y(a; s)st>
and

(17) X(ajt) = ¢t <E(a) + /Ot e *g(a; s)st> .

oF 10
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We can see that
¢ ¢
(18) c(a) +/ e *y(a; s)dBs < ¢(a) +/ e °y(a; $)dBs
0 0

for all t € [0,71] a.s.. In fact, to prove this, put

2(t) = 2(a) — c(a) + /0 ((a; 5) — y(cs 5))dBs.

Then Z(t) > 0 for all t € [0, 7] a.s. clearly. By It6’s formula, we have

¢(a) + /:e‘sy(a; s)dBs — c(a) — /Ot e *y(a; s)dBs

Em)—da%+Acfﬂﬂaw)—yawDM%

t
= e_tZ(t)-f-/ e °Z(s)ds
0
> 0.

Thus, from (16), (17) and (18), we can see that X(o;t) > X(a;1).
Furthermore, the expectation and variance of X(a;t) for t € [0,71] are
calculated as follows.

E[X(a;t)] = ¢(a)é

and

>l

(t)) = E[X(at) - EX(;8)))?

t
= Bl [ e plaidB)

Var(

t
= eZt/ e 2 E[y(a; s))*ds.
0
Similarly we obtain
E[X(0;t)] = c(a)e’
and

Var(X(a;t)) = th/() e—QSE[g(a; s))%ds.
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Next, we consider the case t € (71,01]. Since, for all ¢t € (m,01],
j:l yla;s)dBs < frt1 y(a;5)dBs and _X(a 71) > X(a;71) we get the fol-
lowing equation

(19)  [X°() = /—[X(s)]“ds-{-[_)g(a;n)

1
t t
+/ @‘(a;s)st,X(a;'rl)-}—/ y(a; s)dBs)].
k| 71

By the same argument as the first part, we get the following vector
valued stochastic differential equation

(20) { dX(a;t) = AX(a;t)dt + Y (o t)dB,

X(aym) =Xy (@), t € (11,01]

where

Kot = 507 | Vo =[50 |

The solution of (20) is given by

X(et) ey | X(@im) + [7 e Flas5)dB,
|: X(Ot t) :| X(a t) = e( ) [ (a 7—1) +f7_ y )dBS

In this case the expectation and the variation of X (a;t) are given by

EX(ait)] = EX (o5m)]

= et=enE(a)

= Ea)e
and
Var(X(a;t))
= B[X(at) - E[X(a;1)))?) ;
= E | (/OTI e *y(a;s)dBs —e ™ /Tf e Yoy s)st)
< e (2 /071 e“QSEUy(a; s)[2ds + 2e72™ [: e 2 El[y(a; s)|2]ds>
<

t
2% /0 ¢ Elly(as )2 + [7(as ) lds.
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Repeating this procedure, when [X]*(t) = [X (a;t), X (ast)] is the
solution of (10), X (c;t) is given by, for each ¢t € (73, o),

X(ast)
¢

et=r) (Y(Q;Tk) —I—/ e_sg(a;s)st>
Tk

k—1 o
e (Z e_”/ e *y(a; s)dBs +e‘”‘/ e *y(a; s)dB)
i=1 T5 Tk

(3

and, for each t € (ok, Tk+1),

X (1)
t
= elt=ox) (7(&;%)—{-/ e_sy(a;s)st>

k

= ¢ (E(a) + ie_"i‘l /U

i=1 -1

¢
(Z _T’/ y(a;8)dBs + e Uk/ e °y(a; s)st>.
Ok

From these we obtain E[X(a;t)] = 2(a)e’ for all ¢ > 0 and

Ti

ey (a; s)st>

Var(X(o;t))

o J 2k fo e Bllly(es ) + 50 )P)ds, ¢ € (7, 04]
- (2k + 1)e? fo 2 Bly(os s)|? + [5(e; 8)P)ds, t € (ok, Tkrl-

This shows that, for given ¢(a) and the distribution of (y(«;t))i>0 and

(F(e; t))i>0, the expectation and upper bound of variance of X(o;t) can
be computed. We can get the results related to X (a;t) similarly.
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