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CORESTRICTION MAP ON BRAUER SUBGROUPS

EunM1 CHoO1

ABSTRACT. For an extension field K of &, a restriction homomor-
phism on Brauer k-group B(k) maps Brauer k-algebras to Brauer
K- algebras by tensor product. A purpose of this work is to study
the restriction map that sends radical (Schur) k-algebras to radical
(Schur) K-algebras. And we ask an analogous question with re-
spect to corestriction map on Brauer group B(K') that whether the
corestriction map sends radical K-algebras to radical k-algebras.

1. Introduction

Let k be a field. A central simple k-algebra is a Brauer algebra, and a
Brauer algebra that is a homomorphic image of a group algebra kG [resp.
twisted group algebra k*G with a 2-cocycle o € Z2%(G, k*)] for some
finite group G is called a Schur [resp. projective Schur| algebra. The
similarity class containing a Brauer k-algebra A is denoted by [A], and
they form a Brauer group B(k). The Schur group S(k) [resp. projective
Schur group P(k)] is a subgroup of B(k) consisting of similarity classes
which are represented by Schur [resp. projective Schur] algebras.

Let L/k be a finite Galois extension with Galois group G = Gal(L/k).
Let A=} .o Lu, denote an algebra having basis {u,| o € G} such that
Ut = 0(z)us and ugu, = a0, 7)uy, for € L and 0,7 € G where each
a(o,7) € L* = L — {0}. Then o € Z%(G, L*), and A is called a crossed
product algebra denoted by (L/k, ). In particular, if L is a cyclotomic
extension k(e) of k (¢ : primitive root of unity) and « has values in (g),
then (L/k, ) is called a cyclotomic algebra. A crossed product algebra
(L/k,) is called a (abelian) radical algebra ([1]) if L = k(T') is a finite
radical G-Galois (abelian) extension over & (i.e., I' is a multiplicative
subgroup of L* and I is G-invariant) and o € Z2(G, L*) is the image
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of some o/ € Z2(G,T'). The sets of similarity classes of cyclotomic k-
algebras and of radical k-algebras form a cyclotomic group C(k) and a
radical group R(k) respectively. Clearly, C(k) < S(k) < R(k) < P(k) <
B(k).

If [A] € B(k) then there is a finite Galois extension E of k such
that [E ® A] = 1 in B(E). That is, E is a splitting field for A, and
A is similar to a crossed product algebra (E/k, ) for some 2-cocycle
a € Z*(E/k,E*)[10, p.28]. A subgroup B(E/k) of B(k) consisting of
Brauer algebras which are split by F is called a relative Brauer group
[4]. By the crossed product theorem [10, p.28|, B(E/k) is identified with
H?(E/k,E*) and

B(k)—hmH2 (E/k) = UH2 E/k) = H*(x/k)

where the direct limit limH?(*/k) runs over all the finite Galois exten-

—E
sions E of k.
Let K/k be an extension field. Then the homomorphism

Resy_x : B(k) — B(K) defined by [A]— [K ® A]

is the restriction map on Brauer group, and the kernel of Resy_ i is
composed of Brauer k-algebras split by K. Thus ker(Res;_.x) is equal
to B(K/k). If E/k is a finite Galois extension containing K/k, then
Resk—k is also defined on B(E/k) — B(E/K) by [A] — [K ® A]. This
yields the commutative diagram that

HYE[K) 5T HA(E/K)
¢! ¢l
B(E/K) %K B(E/K)

(refer to [7] p.252), where ¢(f) = [(E/k, f)] € B(E/k) is an isomorphism
for f € Z%(E/k), and resy_ i is the cohomological restriction defined
in the following manner: for any groups H < G and any G-module M,

s : H*(G,M) — H?(H,M) satisfies (resa)(h1,ha) = a(hi, h) with
a € Z?(G,M) and hy,hs € H. Thus with a crossed product algebra
[(E/k,a)] in B(E/k), we have

Resi—i [(E/k,a)] = [K @ (E/k, )] = [(E/K,tesp- k)]

In this paper we first ask whether the restriction map Res : B(k) —
B(K) on Brauer groups sends Schur k-algebras to Schur K-algebras,
and radical k-algebras to radical K-algebras. In Section 2 we show that

Res(S(k)) and Res(R(k)) are contained in S(K) and R(XK) respectively.
We then ask the similar question with respect to the corestriction map
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Cor : B(K) — B(k). While restriction maps are defined explicitly by
tensor product, corestriction maps are not much known. In Section 3
we adapt the notion of class formation introduced in class field theory
[2]. The Galois extension K/k produces a formation, and the situation
of cohomology group in the class formation is entirely analogous to that
of Brauer group. We will define corestriction maps on Schur group
and Radical group precisely (in Theorem 7) and prove that Cor(S(K)),
Cor(R(K)) and Cor(R(E/K)) are contained in S(k), R(k) and R(E/k)
respectively.

In what follows, let Z2(K/k,M) = Z*(G,M) denote the cocycle
group defined over Gal(K/k) = G and a G-module M, and H2(K /k, M)
the cohomology group. When M = K*, we write Z*(K/k,K*) =
Z%(K/k). We shall denote & € H?(K/k) for the cohomologous class
of o € Z?(K/k). Denote Res, Inf and Cor the restriction, inflation and
corestriction map on Brauer groups respectively, while res, inf and cor
the cohomological ones. We write by ¢ a primitive root of unity.

2. Preliminaries and restriction map on Brauer groups

Throughout the paper we always assume that K is a Galois extension
field of k. We begin with a well known fact about crossed product
algebras.

REMARK 2.1. ([7], (29.6)) Two 2-cocycles o and g in Z%(K/k) are
cohomologous if and only if the crossed product algebras (K/k, o) and
(K /k,3) are k-isomorphic.

We shall verify that Resy_x : B(k) — B(K) maps the subgroups
S(k), C(k), P(k) and R(k) of B(k) to S(K), C(K), P(K) and R(K)
respectively.

THEOREM 2.2. The restriction Resy_x maps (projective) Schur k-
algebras to (projective) Schur K-algebras, that is, Resy—x|p) : P(k) —
P(K) and Resyk|s(k) : S(k) — S(K) are homomorphisms.

PROOF. Let [S] € P(k). Then there is A € [S] that is an image
of kG by a surjective homomorphism ¢, for some finite group G and
a € Z?(G, k*). Regarding [A] as in B(k), Resgp—k[A4] = [K®A] € B(K).
Hence if let ¢ = K ® ¢ then ¢ is a surjection of K ® k*G = K°G
onto K ® A. And the center Z(K ® A) = K @ Z(A) = K, because
Z(A) = k. This shows that K ® A is a central simple K-algebra which
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is a homomorphic image of K*G. Thus Resi—.k[S] = Resk_xk[A] =
[K ® A] € P(K). When a = 1, Resyklsx) : S(k) — S(K) is a
homomorphism. 0

THEOREM 2.3. The Resi_.x maps cyclotomic k-algebras to cyclo-
tomic K-algebras, that is, Resg—x|cx) : C(k) — C(K) is a homomor-
phism.

ProOF. Let [S] € C(k) and A € [S] be a cyclotomic k-algebra
(k(e)/k,a) with o € Z%(k(€)/k, (€)). Due to [7](29.13), K®(k(e) /k, a) =
(K (e)/K,~) where v is obtained from « by restriction to Gal(K (¢)/K) &
Gal(k(e)/(K Nk(e))) < Gal(k(e)/k). Since y(z,y) = a(z,y) for z,y €
Gal(K(¢)/K), v has values in (¢) and (K(¢)/K,v) is a cyclotomic K-
algebra. Therefore [S] = [A] and

Resi—x[S] = K ® [(k(e)/k, 0)] = [(K(e)/K,7] € C(K).

REMARK 2.4. By virtue of cohomological homomorphisms

k—Knk(e)

H2(h(e)/k) "5 B2 (k(e) (K N k() 2 B2 (K ()/K),
(I an isomorphism [5] p.268, we may consider v = I resy_, k()@ SO
Resp—x[S] = [(K(e)/K, I resykrk(e)e)]
= [(k(e)/(K Nk(e)), resg_. krr()a)]-
In particular, if £k = K N k(e) or k is a maximal cyclotomic extension

over rational number field contained in K then Resg_ x[(k(¢)/k,a)] =
[(K(g)/K, )] (refer to [10], p.46).

THEOREM 2.5. The Resy_.x maps radical k-algebras to radical K-
algebras. That is, Resy—k|p(xy : R(k) — R(K) is a homomorphism.

PRrROOF. Let [S] € R(k) and A € [S] be a radical k-algebra (k(I")/k, a)
where k(T') is a finite radical Galois extension over k and o € Z2(k(T)/k)
is an image of some o’ € Z2(k(T')/k,T'). Regarding A as a Brauer k-
algebra, Resi_,x on B(k) determines

Resk_,K[S] = Resk_,K[A] = [K@ (k(F)/k, a)]
= [(K(P)/K, TeSk—»Knk(r)G)] .

Since k(I')/k is Galois, so are k(I')/(K Nk(T')) and K(T')/K. Moreover
since the quotient group I'k*/k* is finite (i.e., for any v € T', v € k* for
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some n > 0), TK*/K* is also finite. Hence K(I')/K is a radical exten-
sion. And res;_, krg(ry is an image of res,_, ki)@' € ZYK(T)/K,T).
Thus (K(I')/ K, res;_ kri(rye) is a radical K-algebra and Resy_.x[S] €
R(K). O

We remark some properties of inflation maps for next use. Let
k < K < E be field extensions and assume that Gal(E/K) is a nor-
mal subgroup of Gal(E/k). Then Gal(E/k)/Gal(E/K) is isomorphic
to Gal(K/k). The cohomological inflation map infx_.p : H2(K/k) —
H?(E/k) is defined by, for 8 € Z2(K/k),

(infx—gB) (z1,z2) = B(z1Gal(E/K), z2Gal(E/K))

for any x; € Gal(E/k).

REMARK 2.6. ([7], p.253) For finite Galois field extensions k < K <
E, we have the following commutative diagram that
maK/k) Meer o prop
! !
Bk/k) s pgsm,

where vertical arrows are isomorphisms. Moreover the crossed product
algebra (K /k,q) is similar to (E/k,infx_ga) for o € Z2(K/k).

3. Corestriction map on Brauer groups

Alongside restrictions resy_ i : H2(E/k) — H?*(E/K) are the ones
in the opposite direction, called corestriction map, denoted by corg i :
H?(E/K) — H%*(E/k). And the corestriction map Corg i : B(E/k) —
B(E/K) on Brauer groups comes from the corresponding map on coho-
mology groups which satisfies the following commutative diagrams:

HYE/K) “Z5~*HY(E/k) limH*(E/K) COTK limH*(E/k)
! ! ; ! !
B(E/K) 5 B(E/K) BK) s B
where the direct limit imH 2(x/k) runs over all the finite Galois exten-

sions of k.
While Resg_x on B(k) is defined explicitly by a tensor product,
the corestriction Corg.; on B(K) is not much known. In this section
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we study how the corestriction map Corg_,, works on both S(K) and
R(K).

Let H < G with |G: Hl=w and let S = {s; =1,---,s,} be a right
transversal of H in G. Then any z € G can be written as x = hs; for
some h € H and 1 <4 < u. Write  for s;, so that 277! € H.

REMARK 3.1. ([6],(2.3.3)) Let H < G and o € Z%(H,M) with a
G-module M. Then (corg_ga)(z,y) = [T, a(sicéiz ™, szysizy )
for any x,y € G. And the composition homomorphism cory_,gresg_.n
on cohomology groups maps 8 € H2(G, M) to 8% for u = |G : H|.

Analogously, the composition map Corg_,xResig_, g on Brauer groups
sends [A] € B(k) to [A]* for u = |K : k| ([10] p.28).

For Galois extensions k < K < L < E, the diagram involving restric-
tion, corestriction and inflation maps is commutative ([9](2.3.7),(2.4.5)):

HY(L/k) "5 gYL/K)O5~*  H2(L/k)
infy g | Linfr g | infr g (1)
HYE/k) %% 2E/K)CE*  HYE/K)
Let G be a group and X be a finite indexed set. Let {Gr}rex be a
family of subgroups of finite index in G satisfying the followings:

1. For every finite family F; € X, there is F € X such that Gp =
NGFE,.

2. For any G’ with Gr < G’ < G for F € X, there is F' € X such
that G' = Gp.

3. For any g € G and F; € X, there is Fj € X such that gGpg™! =
GF,.

The system (G, {Gr}rex, M) with a G-module M is called a formation
([8], (XI)). If F, E € X, we say that E is an extension of F (write E/F)
whenever Gg < Gp. In particular if Gg is normal in Gg, E/F is said to
be Galois, and the quotient group Gr/Gp is called the Galois group. A
class formation is a formation (G, {Gr}rex, M) satisfying the following
Axioms I and II.

I. For every Galois extension E/F, H'(E/F) = 0.
II. Invp on H%(x/F) is injective, and Inv;, Resp_,; = |L : F|InvF for
every L/F.
Here, Invp : H?(E/F) — Q/Z is the invariant homomorphism and
H?(x/F) denotes the direct limit of H?(E/F), as E runs through the
set of Galois extensions of F. The group H?(*/F) is therefore the union
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of H2(E/F'), so the situation is entirely analogous to that of the Brauer
group B(F).

Let K/k be a Galois extension field with Galois group G = Gal(K/k),
in particular K is often taken as a separable closure of k. Let X denote
the set of all finite extensions of k contained in K, let Gr = Gal(K/F)
foreach F € X, and let M = K*. Then the ordinary Galois theory shows
that (G, {Gr}rex, M) forms a formation of k such that |G : Gp| = |F :
k| and the fixed subgroup MSF of M by G equals F*. Furthermore, if
F;/F; is a Galois extension with any F;, F; € X then Noether’s equation
([8], p.150 or [9],(1.5.4)) shows that H!(F;/F;) = 0 which is the Axiom
I. Hence a formation of k satisfying Axiom II is a class formation. It is
proved in (Chapter 6, Theorem 1 at [2]) that formations of both local
fields (see [7], (31.9)) and global fields (see [3],[8]) are class formations,
however the verification for global class field theory is more involved
with idele classes.

PROPOSITION 3.2. ([8],p.167) Let (G,{Gr}rex, M) be a class for-
mation of k. Let F < E < L be in X with L/F Galois. Then
resp_p : H*(L/F) — H?(L/E) is surjective, so Resp_g is a surjec-
tive homomorphism from B(F') onto B(E).

Next theorem which is one of our main result provides a construc-
tion of the corestriction map on Schur group according to cohomological
corestriction map.

THEOREM 3.3. Let K/k be a Galois extension. If the formation
(G, {GF}Fex, M) of k satisfies the Axiom II, then Cork_ on B(K)
maps Schur K-algebras to Schur k-algebras, that is, Corg .| S(K)
S(K) — S(k) is a homomorphism.

PRroOOF. Let [S] € S(K). By Brauer-Witt theorem ([10], p.31), there
is A € [S] which is similar to a cyclotomic algebra (K(g)/K,a) with
a € Z2(K(e)/K, (¢))-

Clearly [S] = [A] and K (¢) is a Galois extension over k, because both
K(e)/K and K/k are Galois extensions and K (¢) is a splitting field over
K of a polynomial in k[X] (see [5],p.268). Hence the corestriction map
corg— : H*(K(e)/K) — H*(K (¢)/k) can be determined, and corg_, o
belongs to Z%(K (¢)/k, (¢)) due to Remark 3.1.

Denote the crossed product algebra (K (g)/k,corgx_a) by A’. Then
[A'] € B(k), and we define a map ¢ on S(K) by [A] — [A'], that is,

¢:S(K) — B(k), ¢[(K(e)/K,a)] = [(K(e)/k,corg—ra)].
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Let (L/K, () be any crossed product algebra contained in [A]. Then
(L/K,3) is similar to A = (K(¢)/K,a). By Remark 2.6, (LK(¢)/K,
inf_, 1k ()0) is similar to (LK (¢)/ K, infg ¢y Lk (c)@), hence infy_, 1 k()
and infg (), k(c)o are cohomologous in H 2(LK(g)/K). Applying core-
striction corg_y : H*(LK(¢)/K) — H*(LK(¢)/k) to the commutative
diagram (1), corg_xinf; ,r k()8 = inf;_ 1k ()cork kB is cohomolo-
gous to COTK—»kian(E)—»LK(g)a = ian(g)—»LK(s)CorK—»ka in H2 (LK(&)/]{)
This shows the well definedness of ¢ that

¢l(L/K,B)) = [(L/k, corx~iB)]

= [(LK(¢)/k,infy_, k() cOT K —k0)]

= [(LK(¢)/k, infg ()~ LK () COTK -k )]

= [(K(e)/k, corx k)] = ¢[(K(e)/ K, a)].

For i = 1,2, if A; = (K(&;)/K, ;) are Schur K-algebras with cy-
clotomic extensions K(g;) of K and a; € Z%(K(g;)/K, (&;)), and if we
write K (g1,€2) = K(e12) then

[A1][A2]
= [(K(e12)/ K, infre(yy—r(erny@r)] [(K (e12)/ K, infr(eg)— K (e10) ¥2) ]
= [(K(e12)/ K, infie(e;)—K(e1)@1 - IDfR(ep)m K (e10)22)]
by Remark 2.6, thus it follows from the diagram (1) that
¢([A1][Az])
= [(K(alg)/k, cor gk (infre(e;) - K (e10) 1 -
Infie(ey)— K (e12)22))]
= [(K(612)/k, (corK_,kian(El)_)K(m,)al)-
(cor k—kinfi () K (e12)22))]
= [(K(e12)/k, corg—pinfi(e;)—K(e1p)21)]
[(K(e12)/k, corg_xinfg () _,K(m)ag)]
= [(K(e12)/ks infic(e))— K (e12)COTK—k1)]
[(K (e12)/k, infi(cy) K (e12)COT K-k Q2)]
= [(K(e1)/k, corg k)]
[(K(&:g)/k corK_,kaz)]
[

¢([A1]) 8 ([42]),

hence ¢ is a homomorphism on S(K).
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Now we claim that
(Z) = COI‘K—%IS(K) : S(K) — B(k‘)

Since Resg—k|s(k) : S(k) — S(K) is a homomorphism by Theorem 2.2,
both compositions Cork_k|s(k) - Resk— ks and ¢ - Resp_k|s(k) are
defined over S(k) to B(k).

Let [T] € S(k) and let B € [T] be a cyclotomic k-algebra (k(v)/k, )
with primitive root of unity v and 8 € Z%(k(v)/k,(v)). Then ¢ -
Resk k| s(x) defines

(¢ - Resk—rls)) [T]

= (¢ - Resk—k|s(i) ) [(k(v)/k, B)]

¢[(K(v)/K, T resy_,knk)0)]

= [(K(v)/k, corx—il resi_krk)B)]
(

where I : H2(k(v)/(K N k(v))) & H3(K(v)/K). We observe that the
following diagram is commutative:

(2)

H2k)k)  EOSRO 2 () k)

resg L knk(v) | L resp . knk()

nfk V=K (v
H2(k(v)/ (K 0 k@))) 5 H2(K (1) /(K N k(v)))

(12~

| TeSgrk()—K
H*(K(v)/K).

Indeed, let z; € Gal(K(v)/K). Then z; € Gal(K(v)/(K Nk(v))), and
we write T; = z;Gal(K(v)/k(v)) in Gal(k(v)/(K Nk(v))). Then for any
0 € H*(k(v)/(K Nk(v))),

(reskrm(w)— Kinfrw)— Kk (1)) (8) (21, 22)

= (infy()~ k() 0) (@1, T2) = 0(Z1, T2).
But since Gal(K (v)/(K Nk(v))) — Gal(k(v)/(K Nk())), 5 — ilkw)
is a surjective homomorphism having kernel Gal(K (v)/k(v)), Z; = x;
Gal(K(v)/k(v)) can be identified with x|,y and the isomorphism I :
H?(k(v)/(K Nk(v))) — H*(K(v)/K) is determined by

(10)(z1, 22) = 0(z1lk(w), Z2lk(w)) = 0(Z1, T2)-

Thus we have

res kr(v)— K 0fk(w)— k) (0) = 1(0), for any 6 € H*(k(v)/(K Nk(v))).
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Hence, due to Remarks 2.6, 3.1 and (1), it follows immediately from (2)
that

~—~

¢- Resk—»K|S )[T]
v)/k, cork .k Tesy_ rriw)B))
v)/k, infi()— ko)cork —kresy_ k B)]

[(K
[(K
[ /k corK_ﬁkresk_,Kﬁ)]
[
= (

If

(k( /kﬁ] with u = |K : k|
Corg—kls(x) - Resk—xls@)) [(k(v)/k, B)]
= (COI‘K_,kls (K) " Resk—»K‘S k)) [T]’

so we have ¢ - Resy.k|s(x) = Corkx—kls(k) -Resk._,K|5(k). This shows
our claim that ¢ = Corg_; on S(K), because the restriction map
Reskp—k]| S(k) on Schur group is surjective by Proposition 3.2. Now we
have

Corg—kls(x)[5]

= CorK—>kIS(K) [(K(&‘)/K, a)]

= [(K(s)/k:,corK_*ka)] € B(k).

We remark that [(K(g)/k,corgka)] is not necessarily contained in
S(k), for K () may not be a cyclotomic extension of k. Hence we will
construct a cyclotomic k-algebra which is similar to the crossed product
algebra (K (¢)/k, corg_.x), so that we can conclude Corg _.x|s(k)[S] €
S(k) and Corg .k : S(K) — S(k) is a homomorphism.

Since Gal(K (¢)/K) = Gal(k(e)/(KNk(¢))), thereis § € Z2(k(c)/(KN
k(¢)), (€)) that corresponds to a € Z%(K (¢)/K, (¢)). Moreover since the
diagram

infy(e)— k(o)
_)

H?(k(e)/(K N k(e))) H?(K(e)/(K Nk(e)))

| TSk k() K
H?(K(e)/K)
is commutative, we can say that resgnr()—xinfye)—k()f = a. Then
owing to the transitivity of corestriction maps, we have

1~

COTK kO = COTK L (resKﬂk(E)_)Kinfk(E)_,K(e)9)

= COT K k() —kCOT K — K k(e) TES K Nk(e)— K 1Dk ()= K ()0
= €OT ke(e)—k (INfr(e)— k (6)0) "

= COT g k(e)—kifr(e)— K () 0"

= infy(e)— K (e)COT Kk (e) k0"
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where u = |K : K Nk(e)|, by Remark 2.6 and the commutative diagram
(1). It therefore follows immediately that

Corg—kls)[S] = [(K(€)/k, corgra)]
= [(K(€)/k, infy(e)— K () 20T Krie(e)—k0™)]
= [(K(e)/k, infr(e)— k() COT krie(e)—k0)]
= [(k(e)/k, cor grr(e)—id)] -

But since (k(e)/k, cor,mk(a)_,kﬁ) is a Schur k-algebra, [(k(s)/k,
corKnk(E)_,kH)} belongs to S(k), hence the corestriction Corg_,; maps
[(K(e)/K,a)] in S(K) to [(k(s)/k,corKnk(s)_,kB)]u in S(k). This com-
pletes the proof. O

Observe that, if K is a cyclotomic extension of k£ in Theorem 3.3, then
K (g)/k is cyclotomic, hence Corg_k|s(x)[S] = [(K(€)/k, corgxa)] €
S(k).

In the rest of the paper we assume that the formation of k satisfies
Axiom II.

THEOREM 3.4. If K/k is a Galois radical extension, then Corg_.j
maps radical K-algebras to radical k-algebras, that is, Corg . : R(K) —
R(k) is a homomorphism.

Proor. Let [S] € R(K) and A be a radical K-algebra in [S] rep-
resented by a crossed product algebra (K(I')/K, ), where K(T') is a
Gal(K (T')/K)-radical extension of K and o € Z?(K(I')/K) is an image
of some o/ € Z?(K(I')/K,T).

Since K(T')/K and K/k are Galois radical extensions, K (") is radical
over k ([5],p.309). Indeed if K = k(T'y) for some subset 'y < K* then
K(I') = k(T'o,T’). If a € T then o™ € K for some n > 0. If a™ € k, then
a is a root of X™ — b € k[X] for some b. If o € Ty then (a™)™ € k and
a is a root of X" — b € k[X] for some m > 0, b € k. Thus K(T') is
a splitting field over K of family of polynomials in k[X], so K(T')/k is
a Galois radical extension (see [5],p.268). Hence we may consider the
cohomological corestriction map corg_.; : H*(K(I')/K) — H*(K(T')/k)
that sends a € Z?(K(T'")/K) to corg_xa € Z2(K(T')/k). We denote the
crossed product algebra (K(T')/k,corg_ra) by A’. Then [A'] € B(k).

Let ¢ : R(K) — B(k) be the homomorphism defined by [A] — [A']
(refer to Theorem 3.3). Since the restriction map Resy .k |gx) : R(k) —
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R(K) is a surjective homomorphism (by Theorem 2.5 and Proposi-
tion3.2) satisfying

¢ . Resk—»KlR(k) = CorK_,klR(K) 'ReSk__,K|R(k) . R(k) - B(k)
by Theorem 3.3, it follows that

COTK—»k'R(K)[S] = d)([AD = [(K(F)/k,corK_)ka)] = [A/] € B(k)
Now due to the commutative diagram
ZYK(I)/K,T)— Z*K()/K) o -«
COT Kk | leorgp 5 L !
Z2(K(T)/k,T) —  Z*K(T)/k) Corg k0  COrg_kQ,
all values of o/ and corg_,ra’ are in " (see Remark 3.1), hence corg_,x0o
can be regarded as the homomorphic image of corg_ro € Z?(K(I')/k,T)
It therefore follows immediately that Corg_ x[S] = Cory— k(4] = [A'] €
R(k). O

In the proof of Theorem 3.4, the assumption K/k is radical is neces-
sary. The following is a special case.

COROLLARY 3.5. Let A = (K(I')/K, ) be a radical K-algebra and
k < k(T') < K(T') be Galois extensions. If either k(I')/k is radical or
K Nk(') =k, then Corg_; maps [A] to a class of radical k-algebras.

PRrROOF. Note that k(T')/(K N k( I‘)) and K(I')/k I‘) are Galois ex-
tensions. Since resy_, grw(r) : H2(k(T)/k) — H*(k(T)/(K N k(T))) is
surjective, the commutative diagram (refer to the dlagram in Theorem
3.3)

RO O ) k)
resg L KnkIT) | , L respk
H?(k(T)/(K NK())) = H*(K(I')/K)

shows that there is 8 € Z%(k(I')/k) with resp_ kinfyr— k()0 = o Thus
we have

Corg—x [(K(I)/K, )] = [(K(T)/k, corg )]
= [(K(T)/k, infyry—xm®)]" = [(k(T)/k,6)]"
with u = |K : k|. Moreover for o/ € Z2(K(T')/K,T) that is mapped to
o, there is 6/ € Z%(k(T')/k,T) such that resy_, ginfyry_, k()8 = o, and

6 is a homomorphic image of ¢'. In case k(I')/k is a radical extension, it
is clear that Corgx—. [(K(I')/K,a)] = [(k(T")/k,6)]" belongs to R(k).
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Suppose that K Nk(I') = k. If x € T then z™ € K for some n > 0.
At the same time, since 2™ € k(I'), it follows that 2™ € K Nk(T) = k.
Hence k(T") is a radical extension of k, thus all arguments go back to the
above case. d

As the relative Brauer group B(K/k) is the ker(Resgx—x : B(k) —
B(K)), we denote by S(K/k), P(K/k) and R(K/k) the kernels of
Resk_x on S(k), P(k) and R(k) respectively. We finally discuss the re-
striction and corestriction maps on groups S(E/k) < S(k) and R(E/K) <
R(K).

THEOREM 3.6. Let k < K < E be Galois extensions contained in
the separable closure of k. Then Resy—k|sg/k) : S(E/k) — S(E/K),
Resy_k|pm/m) : R(E/k) — R(E/K) and Cork_|s(g/k) : S(E/K) —
S(E/k) are homomorphisms that make the diagram commute:

S(E/K) < S(K)
Tl Resg. i Tl COI'K—rk
S(E/k) s S(k).

Moreover Cork —k|p(E/k) : R(E/K) — R(E/k) is also a homomorphism
if K is radical over k.

Proor. Let [S] € R(E/k). Then [S] € R(k) and Resx_g[S] =1 €
S(E). Due to Theorem 2.5, Resg_, x[S] € R(K). Since E®Resg_x[S] =
Resg . r(Resg—x[S]) = Resy—g[S] = 1, Resk_k[5] belongs to R(E/K)
and Resg .k |p(g/k) : R(E/k) — R(E/K) is a homomorphism.

Assume that K/k is a radical extension. Let [S] € R(E/K) and
A € [S] be a radical K-algebra (K(I')/K,a) where o € Z?(K(I')/K) is
an image of some o’ € Z2(K(T')/K,T). Then

1=E®[A] = [(E(T)/E,I resk_prgr)a)]
= [(K(T)/(EN K(T)), resk— gk m)]

I
where Gal(K(I')/(E N K(I"))) = Gal(E(T")/E), thus we have
1 =resggnk ()

Due to the proof of Theorem 3.4, Corg_x[A] = [(K(T)/k, corg_,a)]
€ R(k) such that corg o is a homomorphic image of corg 0.
Moreover since

E ® Corg—k[A] = [(E(T)/E, T resg—pni(r)cork—ka)),
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we are only left to show
resy— gnk (r)Cork ke = 1 in Z2(K(T)/(EN K(T))) = Z*(E(T)/E).

Consider the inflation-restriction sequence

0 — HX((En KT)/K TH) % 52k (T)/K,T)

= HA(K(T)/(EN K(T)),T)
where inf = infpngr)-K(T), T€S = resg ,pni(r) and I'H is the fixed
module of I' by H = Gal(K(I')/(E N K(T'))). Since H}(K(T)/(E N
K(T))) =119,(1.5.4)], the sequence is exact [9, (3-4-3)], or [8, (X.6.5)].
From 1 = resg_,pnk(r)o, we have & belongs to ker(resK_»EﬂK(p)) =
im(infpng )k (r)), thus there exists

B e H*(ENK()/K) suchthat infgngr)—xmb = &

Then, by virtue of the exactness of the inflation-restriction sequence, we
have

resy—, Enk (I)COTK—k0 = resk——»EﬁK(l")COI’K—»kinfEmK(F)ﬁK(F)B
= T€84 B (NI B K (T)— K (1) COT K3
resK—»E‘nK(I‘)resk—»KinfEnK(F)—uK(F)COYK—»kB

= resK—»EmK(F)infEﬁK(I‘)—»K(F)reskeKcorK—»kB

= 0-resy_gCorg_ B = O.

It thus follows that res;_, prg(r)corg—ra = 1, as is desired. Analogous
methods can be applied to show Resg—x|sz/k) : S(E/k) — S(E/K)
and Corg k|s(g/K) : S(E/K) — S(E/k) are homomorphisms. O
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