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ALMOST SURE CONVERGENCE FOR
LINEAR PROCESS GENERATED BY
ASYMPTOTICALLY LINEAR NEGATIVE
QUADRANT DEPENDENCE PROCESSES

GUANG-HUI CAl

ABSTRACT. In this paper, we obtain strong law of large numbers for
linear process generated by asymptotically linear negative quadrant
dependence processes.

1. Introduction

In 2000, Zhang gave the concept of asymptotically linear negative
quadrant dependence. The concept of asymptotically linear negative
quadrant dependence see the following definition.

DEFINITION 1 A random variables sequence {Xg,k € N} is said to
be asymptotically linear negative quadrant dependence (ALNQD), if

p~(r) =sup{p™(S,T); dist(S,T) >r, S, T CN are finite} — 0

as 7 — 00, where

- Cov(f(X),g(Y))
ST)y=0V : X e F(S),Y e F(T)}.
p ( ) Sup{ (Varf(X))1/2(Varg(Y))l/2 ( ) ( )}
In this paper, we assume that {¥;, 0 < i < oo} be an asymptoti-
cally linear negative quadrant dependence sequence. Let X; be a linear
process generated by Y;, that is

o0
(1) Xi=> aY
i=0
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where
(2) Z la;| < oo.
i=0

For the linear process, Ho and Hsing (1997), Phillips and Solo (1992)
and Wang et al (2002) got central limit theorems for linear process under
independent assumptions. Kim and Baek (2001) got a central limit theo-
rem for strongly stationary linear process under linear positive quadrant
dependent assumptions. Salvadori (2003) have obtained Linear combi-
nations of order statistics to estimate the quantiles of generalized pareto
and extreme values distributions. Kim et al (2004) got a strong law of
large numbers for linear process generated by linear positive quadrant
dependence or associated.

In this paper, we obtain a strong law of large numbers for linear pro-
cess generated by asymptotically linear negative quadrant dependence
processes.

Throughout this paper, C will represent a positive constant though
its value may change from one appearance to the next, and a, < b, will
mean a, < Cb,.

2. Proof of the main theorem

In order to proof our theorems, we need the following lemmas.

LEMMA 1.(Zhang, 2000) Let {Y;, ¢ > 1} be a sequence of centered
asymptotically linear negative quadrant dependence (ALNQD) random
variables and E|Y;|P < oo for some p > 2 and every i > 1. Then there
exists C = C(p, p~(n)), such that

k
E max IZY#’ < CnP/? max E|Y;|P
1<k<n e 1<k<n

LEMMA 2. Let {Y;, ¢ > 1} be a sequence of centered asymptotically
linear negative quadrant dependence (ALNQD) random variables and
ElY;|P < oo for some p > 2 and every i > 1. Let Then as n — oo, we
have Z—’j}ﬁ — 0 a.s.

Proof of Lemma 2. Ve > 0 and for some p > 2. Using Lemma 1 and
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Markov inequality, we have

ZP\ZY|>sn)
n=1 =1
< ZElZz 1Y|

EmaX1<k<n|Z_ Y;|P
<Z por J

8||

< ;Cn”/ max E|Y;|P(en)™?
o0
(3) < ZC’n_”/2 < 0.
n=1

By Borel-Cantelli Lemma, when n — oo, we have % —0 as O

The following theorem is the strong law of large numbers for linear pro-
cess generated by asymptotically linear negative quadrant dependence
processes.

THEOREM 1. Let {Y,, n > 0} be an asymptotically linear negative
quadrant dependence sequence of indentically distributed random vari-
ables with EY; = 0, E|Y;|P < oo, for some p > 2, and let { X}, t > 0} be
a linear process defined by (1). Suppose that (2) holds, Sp, = Y i, X;,
then as n — oo, we have %’l — 0 a.s.

PROOF OF THEOREM 1. Let X; = (222, a;)Ys, S = Yo%, X, It is clear
that

k

fl
Ma-
2

t=1
k k—t
ZZ azY;}“i’
t=1 i=0 t= 1 i=k—t+1
ko t-1
:Z( a;Y;;) + ( a;)Y;.

o~
Il
—
-,
1l
=]

t=1 i=k-t+1
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Then

k o k o
(5) Sk —Sp=— Z(Z a;Yii) + Z( Z a;)Ys =t A+ B.

t=1 i=t t=1 i=k—t+1

First we proof

-1 S P
(6) n 1rgnka’§nlsk Sk| — 0.

In order to proof (6), we need only to show

(7) n~! max |A| £.0.
1<k<n

and

(8) n~! max |B] £, 0.
1<k<n

Using the Minkowsky inequality, Lemma 1 with » > 2 and the dominated

convergence theorem, then

k oo
—TE ., ", ‘s
W 2 )
oo Nk
—_ - . Ry
=n Elrsnléi%(nlzg;azn—z)l
= =
o) Nk
<nTE(Y ol max | > Yl
i=1 SRS 3
00 ink
<0 (Y laal (B max | Yia)VT)"
=82t =1

i=1

< (3@l An) 2T
i=1

9) < lailE A )20 = o(1).
i=1
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By (9), we have (7).
Because

(10)

EM» &Mw

[e]
o) k
i Z Y + Z aiZYt=3 By + Bs.
t=k—it+1 i=k+1  t=1

Let {pn} be a positive integers {p,} such that p, — oo and p,/n — 0,
we have

n! max |By|

1<k<n
oC oo
< (3 lodn~" ma |zY|+ (Y labn lrggganYl
i=0 i=pp+1
(11) = B21 + B22.
Using Lemma 1 with » > 2, we have
o0 k
T N7y, —T VAU
E|By| (; i)™ n E@%’;'; i

<O lal)ynC(p) PEMI
i=0

(12) < CQ lail)" (n/n)"*n7""? = o(1).
i=0
Using Lemma 1 with » > 2, we have

o0 k
T —_ ANT =T |7
E| B —(izg_:ﬂlazi)n ElrgggnI;Yzl
(o o]
<( Z las])"n="Cn"/2E|YL["
.=pn+1
(13) < C( Z = o(1).
i=pn+1

By (11), (12) and (13), we have

(14) nt max. | Bs| £,0.
1<k<
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Next, we want to proof

(15) L, =n""! max |By] 0.
1<k<n

For each m > 1, let

k k
Bim=)» b Y Y,

i=1  t=k—i+1
where b; = a;I(i < m). Let

Lym=n -1

max |Biml,
1<k<n

for each m > 1, then
_ P
(16) Lym < (la] + -+ + [am|)n 1('Y1| + Vi) —
Ve > 0, by Lemma 1, we have
P(|Ly — Lym| > €)
<& "(Lp— Lnm)"

k
<e ™ "E max | Z(ai b)Y+ + Vi)

m<k<n P
k k k—1i
<e"n"E max Z lai|( ZK ZY,
m<k<n
i=m-+1 =1 i=1
o)
< 2MeT"( Z la;])'n™"E max |ZY|T
. 1<k<n 4
i=m+1 - =1

o0
< 2Me7( Z las|) n~"Cn"/2EYT

i=m-+1
(17) <C( Y a2 0,
i=m+1

when n — o0. By (17), we have

(18) L = Ll -5 0.

Using (16) and (18), we have (15). By (14), (15) and (10), we have (8)
Therefore we have (6). B

o0
EX, = (Z a;)EY; = 0, E| X;|P = (Z a)PE|Y P < oo,
i=0 =0
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By Lemma 2, we have

(19) SR~ Oas,
By
o~ n —_~
ES,=Y EX;=0,
i=1

and

o0 n

EXi=) wEY; i=0,BES, =Y EX;=0,

i=0 i=1
thus by (19) and (6), we have S—; — 0 a.s. Now we complete the proof
of Theorem 1. O

Because asymptotically linear negative quadrant dependence (AL-
NQD) sequence is more general than linear negative quadrant depen-
dence (LNQD) sequence or p*-mixing sequence. So we have the follow-
ing two Corollaries.

COROLLARY 1. Let {Y,, n > 0} be a LNQD sequence of indentically
distributed random variables with EY; = 0, E|Y;|? < oo, for somep > 2,
and let {X;, t > 0} be a linear process defined by (1). Suppose that (2)
holds, S, = 3 4 X, then as n — oo, we have ﬁnﬂ — 0 a.s.

COROLLARY 2. Let {Y,, n > 0} be a p*-mixing sequence of indentically
distributed random variables with EY; = 0, E|Y;|P < oo, for somep > 2,
and let {X;, t > 0} be a linear process defined by (1). Suppose that (2)
holds, S, = 3, X;, then as n — oo, we have i—" —0 as.
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