Deformation Behavior and Nucleation Activity of a Thermotropic Liquid­Crystalline Polymer in Poly(butylene terephthalate)-Based Composites

  • Kim Jun Young (Department of Fiber and Polymer Engineering, College of Engineering, Hanyang University) ;
  • Kang Seong Wook (Department of Fiber and Polymer Engineering, College of Engineering, Hanyang University) ;
  • Kim Seong Hun (Department of Fiber and Polymer Engineering, College of Engineering, Hanyang University) ;
  • Kim Byoung Chul (Department of Fiber and Polymer Engineering, College of Engineering, Hanyang University) ;
  • Shim Kwang Bo (Department of Ceramic Engineering, CPRC, College of Engineering, Hanyang University) ;
  • Lee Jung Gyu (SKC Film R&D Center)
  • Published : 2005.02.01

Abstract

Polymer composites based on a thermotropic liquid-crystalline polymer (TLCP) and poly(butylene terephthalate) (PBT) were prepared using a melt blending process. Polymer composites consisting of bulk cheap polyester with a small quantity of expensive TLCP are of interest from a commercial perspective. The interactions between the PBT chains and the flexible poly(ethylene terephthalate) (PET) units in the TLCP phase resulted in an improvement in the compatibility of PBT/TLCP composites. TLCP droplets deformed and fragmented into smaller droplets in the PBT/TLCP composites, which resulted in TLCP fibrillation through the effective deformation of the TLCP droplets. The nucleation activities of the PBT/TLCP composites increased by adding even a small amount of the TLCP component.

Keywords

References

  1. R. E. S. Bretas and D. G. Baird, Polymer, 33, 5233 (1992) https://doi.org/10.1016/0032-3861(92)90806-8
  2. W. C. Lee and T. DiBenedetto, Polymer, 34, 684 (1993) https://doi.org/10.1016/0032-3861(93)90348-E
  3. G. Kiss, Polym. Eng. Sci., 27, 410 (1987) https://doi.org/10.1002/pen.760270606
  4. D. Dutta, A. Fruitwala, A. Kohli, and R. A. Weiss, Polym. Eng. Sci., 30, 1005 (1990) https://doi.org/10.1002/pen.760301704
  5. L. C. Saywer and M. Jaffe, J. Mater. Sci., 21, 1897 (1986) https://doi.org/10.1007/BF00547924
  6. B. Bassett and A. F. Yee, Polym. Compos., 11, 10 (1990) https://doi.org/10.1002/pc.750110103
  7. H. J. Radusch, in Handbook of Thermoplastic Polyesters, S. Fakirov, Ed., Wiley-VCH, Weinheim, 1993, Vol. 1
  8. R. Westdyk and D. McNally, in Handbook of Plastic Materials and Technology, I. I. Rubin, Ed., John Wiley & Sons, NewYork, 1990
  9. S. C. Tjong and Y. Z. Meng, J. Appl. Polym. Sci., 74, 1827 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1827::AID-APP27>3.0.CO;2-M
  10. A. I. Isayev and M. Modic, Polym. Compos., 8, 158 (1987) https://doi.org/10.1002/pc.750080305
  11. M. Amano and K. Nakagawa, Polymer, 28, 263 (1987) https://doi.org/10.1016/0032-3861(87)90415-0
  12. S. H. Kim, in Modern Polyesters, J. Scheirs and T. E. Long, Eds., Wiley Interscience, New York, 2004, Chap. 20
  13. S. H. Kim, S. W. Park, and E. S. Gil, J. Appl. Polym. Sci., 67, 1383 (1997) https://doi.org/10.1002/(SICI)1097-4628(19980222)67:8<1383::AID-APP4>3.0.CO;2-A
  14. S. H. Kim, S. W. Kang, J. K. Park, and Y. H. Park, J. Appl. Polym. Sci., 70, 1065 (1998) https://doi.org/10.1002/(SICI)1097-4628(19981107)70:6<1065::AID-APP3>3.0.CO;2-M
  15. S. H. Kim and S. W. Kang, Fibers and Polymers, 1, 83 (2000) https://doi.org/10.1007/BF02875190
  16. D. S. Park and S. H. Kim, J. Appl. Polym. Sci., 87, 1842 (2003) https://doi.org/10.1002/app.11656
  17. J. Y. Kim, E. S. Seo, S. H. Kim, and T. Kikutani, Macromol. Res., 11, 62 (2003) https://doi.org/10.1007/BF03218279
  18. J. Y. Kim, S. H. Kim, and T. Kikutani, J. Polym. Sci.; Part B: Polym. Phys., 42, 395 (2004) https://doi.org/10.1002/polb.10726
  19. J. Y. Kim, O. S. Kim, S. H. Kim, and H. Y. Jeon, Polym. Eng. Sci., 44, 395 (2004) https://doi.org/10.1002/pen.20036
  20. K. Qi and K. Nakayama, J. Mater. Sci., 36, 3207 (2001) https://doi.org/10.1023/A:1017934302816
  21. J. H. Chang and B. W. Jo, J. Appl. Polym. Sci., 60, 939 (1996)
  22. M. Pracella, D. Dainelli, G. Galli, and E. Chiellini, Makromol. Chem., 187, 2387 (1986) https://doi.org/10.1002/macp.1986.021871009
  23. M. Paci, C. Barone, and P. L. Magagnini, J. Polym. Sci.; Part B: Polym. Phys., 25, 1595 (1987) https://doi.org/10.1002/pola.1987.080250405
  24. T. T. Hsieh, C. Tiu, K. H. Hsieh, and G. P. Simon, Korea Polym. J., 6, 44 (1998)
  25. J. K. Lee, K. H. Lee, and B. S. Jin, Macromol. Res., 10, 44 (2002) https://doi.org/10.1007/BF03218282
  26. W. J. Bae, W. H. Jo, and Y. H. Park, Macromol. Res., 10, 145 (2002) https://doi.org/10.1007/BF03218282
  27. S. S. Bafna, T. Sun, and D. G. Baird, Polymer, 34, 708 (1992)
  28. A. Datta and D. G. Baird, Polymer, 36, 505 (1995) https://doi.org/10.1016/0032-3861(95)91559-P
  29. K. H. Wei and G. Kiss, Polym. Eng. Sci., 36, 713 (1996)
  30. J. He and W. Bu, Polymer, 35, 5061 (1994) https://doi.org/10.1016/0032-3861(94)90665-3
  31. A. Siegmann, A. Dagan, and S. Kenig, Polymer, 26, 1325 (1985) https://doi.org/10.1016/0032-3861(85)90307-6
  32. K. G. Blizard and D. G. Baird, Polym. Eng. Sci., 27, 653 (1987)
  33. J. He, W. Bu, and H. Zhang, Polym. Eng. Sci., 35, 1695 (1995) https://doi.org/10.1002/pen.760352106
  34. F. P. La Mantia and A. Valenza, Makromol. Chem. Macromol. Symp., 56, 151 (1992)
  35. R. L. Scott, J. Chem. Phys., 17, 279 (1949) https://doi.org/10.1063/1.1747239
  36. P. J. Flory, in Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953
  37. T. Nishi and T. T. Wang, Macromolecules, 8, 909 (1975) https://doi.org/10.1021/ma60048a040
  38. O. Olabisi, L. M. Robeson, and M. T. Shaw, in Polymer-Polymer Miscibility, Academic Press, New York, 1979
  39. L. M. Sun, T. Sakamoto, S. Ueta, K. Koga, and M. Takayanagi, Polym. J., 26, 953 (1994) https://doi.org/10.1295/polymj.26.953
  40. T. S. Chung, in Thermotropic Liquid crystal Polymers, Technomic, Lancaster, 2001
  41. C. K. Schoff, in Encyclopedia of Polymer Science and Engineering, M. A. Kohudic, Ed., Wiley, New York, 1989, Vol. 14
  42. F. P. La Mantia, A. M. Valenza, and P. L. Magagnini, J. Appl. Polym. Sci., 38, 583 (1989) https://doi.org/10.1002/app.1989.070380318
  43. F. P. La Mantia, A. M. Valenza, and P. L. Magagnini, Polym. Eng. Sci., 30, 7 (1990)
  44. G. I. Taylor, Proc. R. Soc., A138, 41 (1932)
  45. G. I. Taylor, Proc. R. Soc., A146, 501 (1934)
  46. G. I. Taylor, Proc. R. Soc., A226, 289 (1954)
  47. M. T. Heino and J. V. Seppala, J. Appl. Polym. Sci., 44, 2185 (1992)
  48. I. Manas-Zloczower and Z. Tadmor, in Mixing and Compounding Theory and Practical Progress, Hanser, Munich, 1994
  49. M. A. Huneault, Z. H. Shi, and L. A. Utracki, Polym. Eng. Sci., 35, 115 (1995) https://doi.org/10.1002/pen.760350114
  50. De Brujin, R. A. Ph.D. Thesis, Einthoven University of Technology, Netherlands, 1989
  51. H. J. Karam and J. C. Bellinger, PIEC Fundam, 7, 576 (1968)
  52. S. Torza, R. C. Cox, and S. G. Mason, J. Colloid Interf. Sci., 38, 395 (1972)
  53. L. E. Nielsen, in Mehcanical Properties of Polymers and Composites, Marcel Dekker, New York, 1974, Vol. 2
  54. P. M. McGenity, J. J. Hooper, C. D. Paynter, A. M. Riley, C. Nutbeem, N. J. Elton, and J. M. Adams, Polymer, 33, 5215 (1992) https://doi.org/10.1016/0032-3861(92)90804-6
  55. D. R. Wiff and R. J. Weinert, Polymer, 39, 5069 (1998) https://doi.org/10.1016/S0032-3861(97)10300-7
  56. L. C. Lopez and G. L. Wilkes, Polymer, 30, 882 (1989) https://doi.org/10.1016/0032-3861(89)90186-9
  57. M. Avrami, J. Chem. Phys., 7, 1103 (1939) https://doi.org/10.1063/1.1750380
  58. M. Avrami, J. Chem. Phys., 8, 212 (1940) https://doi.org/10.1063/1.1750631
  59. T. Ozawa, Polymer, 12, 150 (1971) https://doi.org/10.1016/0032-3861(71)90041-3
  60. T. Ozawa, J. Thermal Analysis, 9, 369 (1976) https://doi.org/10.1007/BF01909401
  61. A. Jeziorny, Polymer, 19, 1142 (1978) https://doi.org/10.1016/0032-3861(78)90060-5
  62. K. Ravindranath and J. P. Jog, J. Appl. Polym. Sci., 49, 1395 (1993) https://doi.org/10.1002/app.1993.070490807
  63. M. Lambrigger, Polym. Eng. Sci., 38, 610 (1998)
  64. T. X. Liu, Z. S. Mo, S. E. Wang, and H. F. Zhang, Polym. Eng. Sci., 37, 568 (1997)
  65. U. W. Gedde, in Polymer Physics, Chapman & Hall, London, 1995
  66. L. Incarnato, O. Motta, and D. Acierno, Liquid Crystalline Polymers, C. Carfagna, Ed., Pergamon, 1993
  67. Y. F. Wang and D. R. Lloyd, Polymer, 34, 4740 (1993) https://doi.org/10.1016/0032-3861(93)90711-I
  68. H. E. Kissinger, J. Thermal Analysis, 9, 369 (1957) https://doi.org/10.1007/BF01909401
  69. H. E. Kissinger, J. Res. Natl. Stand., 57, 217 (1956) https://doi.org/10.6028/jres.057.026
  70. A. Dobreva and I. J. Gutzow, J. Non-Cryst. Solids, 162, 1 (1993) https://doi.org/10.1016/0022-3093(93)90736-H
  71. A. Dobreva and I. J. Gutzow, J. Non-Cryst. Solids, 162, 13 (1993) https://doi.org/10.1016/0022-3093(93)90737-I
  72. M. Alonso, J. I. Velasco, and J. A. De Saja, Eur. Polym. J., 33, 255 (1997) https://doi.org/10.1016/S0014-3057(96)00303-5
  73. S. H. Kim, S. H. Ahn, and T. Hirai, Polymer, 44, 5625 (2003) https://doi.org/10.1016/S0032-3861(03)00623-2
  74. S. H. Ahn, S. H. Kim, and S. G. Lee, J. Appl. Polym. Sci., 94, 812 (2004) https://doi.org/10.1002/app.21007
  75. S. H. Ahn, S. H. Kim, B. C. Kim, K. B. Shim, and B. G. Cho, Macromol. Res., 12, 293 (2004)