Preparation of Electrospun Oxidized Cellulose Mats and Their in vitro Degradation Behavior

  • Khil Myung Seob (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Hak Yong (Department of Textile Engineering, Chonbuk National University) ;
  • Kang Young Sic (Department of Textile Engineering, Chonbuk National University) ;
  • Bang Ho Ju (Department of Textile Engineering, Chonbuk National University) ;
  • Lee Douk Rae (Department of Textile Engineering, Chonbuk National University) ;
  • Doo Jae Kyun (Department of General Gynecology and Obstetrics med. School, Chonbuk National University)
  • Published : 2005.02.01

Abstract

This paper investigated the effect of biodegradation behavior on the oxidation of cellulose nanofiber mats. The cellulose mats were produced through electro spinning. The diameter of an electrospun fiber varied from 90 to 240 nm depending on the electrospinning parameters, such as the solution concentration, needle diameter, and rotation speed of a grounded collector. Oxidized cellulose (OC).mats containing different carboxyl contents were prepared using $NO_2$ as an oxidant. The total carboxyl content of the cellulose nanofiber mats obtained after oxidation for 20 h was $20.6\%$. The corresponding carboxyl content was important from a commercial point of view because OC containing $16-24\%$ carboxyl content are used widely in the medical field as a form of powder or knitted fabric. Degradation tests of the OC mats were performed at $37^{\circ}C$ in phosphate-buffered saline (pH 7.4). Microscopy techniques were introduced to study the morphological properties and the degradation behavior of the OC mats. Morphological changes of the mats were visualized using optical microscopy. Within 4 days of exposure to PBS, the weight loss of the OC mats was $>90\%$.

Keywords

References

  1. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996) https://doi.org/10.1088/0957-4484/7/3/009
  2. J. M. Deitzel, W. Kosik, S. H. McKnight, N. C. B. Ten, J. M. Desimone, and S. Crette, Polymer, 43, 1025 (2002) https://doi.org/10.1016/S0032-3861(01)00594-8
  3. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer, 40, 7397 (1999) https://doi.org/10.1016/S0032-3861(98)00866-0
  4. A. Fertala, W. B. Han, and F. K. Ko, J. Biomed. Mater. Res., 57, 48 (2001) https://doi.org/10.1002/1097-4636(200110)57:1<1::AID-JBM1134>3.0.CO;2-R
  5. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof, Macromolecules, 33, 2989 (2000) https://doi.org/10.1021/ma991858f
  6. J. D. Stitzel, K. Pawlowski, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, J. Biomater. Appl., 15, 1 (2001)
  7. E. D. Boland, G. E. Wnek, D. G. Simpson, K. J. Pawlowski, and G. L. Bowlin, J. Macromol. Sci., 38, 1231 (2001) https://doi.org/10.1081/MA-100000355
  8. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai J. Biomed. Mater. Res., 67, 675 (2003)
  9. E. Zussman, A. L. Yarin, and D. Weihs, Experiments in Fluids, 33, 315 (2002) https://doi.org/10.1007/s00348-002-0435-6
  10. A. Formhals, GB Pat. 364780 (1929)
  11. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Composites Science and Technology, 63, 2223 (2003) https://doi.org/10.1016/S0266-3538(03)00178-7
  12. P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, AIChE J., 45, 190 (1999) https://doi.org/10.1002/aic.690450116
  13. L. Gary, K. J. Bowlin, and E. D. Pawlowski, in Tissue Engineering and Biodegradable Equivalents: Scientific and Clinical Application, K. U. Lewandrowski, L. W. Donald, J. T. Debra, D. G. Joseph, J. Y. Michael, and E. A. David, Eds., Marcel Dekker, New York, 2002, pp 165-78
  14. S. A. Athreya and D. C. Martin, Sensor. Actuat. A-Phys., 72, 203 (1999) https://doi.org/10.1016/S0924-4247(98)00223-4
  15. C. J. Buchko, M. J. Slattery, K. M. Kozloff, and D. C. Martin, J. Mat. Res., 15, 231 (2000) https://doi.org/10.1557/JMR.2000.0038
  16. C. J. Buchko, K. M. Kozloff, and D. C. Martin, Biomaterials, 22, 1289 (2001) https://doi.org/10.1016/S0142-9612(00)00074-0
  17. J. C. Pommier, J. Poustis, C. Baquey, and D. Chauveaux, Fr. Pat. 8610331 (1986)
  18. Eur. Pat. 0256906 A1 (1987)
  19. U. S. Pat. 4904258 (1990)
  20. P. L. Granja, M. A. Barbosa, L. Pouysegu, B. De Jeso, and C. Baquey, in Frontiers in Biomedical Polymers Applications 2, R. Ottenbrite, Ed., Technomic Press, Lancaster, PA, USA, 1999, pp 195-225
  21. M. Martson, J. Viljanto, T. Hurme, and P. Saukko, Eur. Surg. Res., 30, 426 (1998) https://doi.org/10.1159/000008609
  22. U. Gross, C. Muller-Mai, and C. Voigt, Fourth World Biomaterials Congress, April, Berlin, Germany, 1992, p. 192
  23. D. Chauveaux, C. Barbie, X. Barthe, C. Baquey, and J. Poustis, Clin. Mater., 5, 251 (1990) https://doi.org/10.1016/0267-6605(90)90023-O
  24. Y. Ikada, in Cellulose: Structural and Functional Aspects, J. F. Kennedy, G. O. Phillips, and P. A. Williams, Eds., Ellis Horwood, Chichester, UK, 1989, pp 447-455
  25. T. Miyamoto, S. Takahashi, H. Ito, H. Inagaki, and Y. Noishiki, J. Biomed. Mater. Res., 23, 125 (1989) https://doi.org/10.1002/jbm.820230110
  26. G. Franz, Adv. Polym. Sci., 76, 1 (1986)
  27. B. Philipp, W. Bock, and F. Schierbaum, J. Polym. Sci. Polym. Symp., 66, 83 (1979)
  28. G. S. Banker and V. Kumar, U. S. Pat. 5,405,953 (1995)
  29. D. M. Wiseman, L. Saferstein, and S. Wolf, U. S. Pat. 6,500,777 B1 (2002)
  30. P. N. Galgut, Biomaterials, 11, 561 (1990) https://doi.org/10.1016/0142-9612(90)90078-5
  31. T. Roder and B. Morgenstern, Polymer, 40, 4143 (1999) https://doi.org/10.1016/S0032-3861(98)00674-0
  32. B. Franklin and S. Lowell, U. S. Pat. 5,180,398 (1993)
  33. V. Kumar and T. Yang, Carbohydrate Polymer, 48, 403 (2002) https://doi.org/10.1016/S0144-8617(01)00290-9