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Abstract. There are a lot of raw materials, work-in-processes and finished goods in manufacturing industry.
Here, the less stock of materials and work-in-processes manufacturing industry has, the worse the rate of the
production is. Inversely, the more manufacturing industry has, the more expensive the cost to support them is.
Thus, it is important for us to balance them efficiently. In general, inventory problems are to decide
appropriate times to produce goods and to determine appropriate quantities of goods. Therefore, inventory
problems require as more useful information as possible. For example, there are demand, lead time, ordering
point and so on. In this paper, we deal with an optimal ordering policy on both way substitutable two-
commodity inventory control system. That is, there is a problem of how to allocate the produced two kinds of
goods in a factory to m areas so as to minimize the total expected inventory cost. The demand of each area is
probabilistic, and we adopt the exponential distribution as a probability density function of demand. Moreover,

we provide numerical examples of the problem.
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1. INTRODUCTION

Manufacturing industry has a lot of raw materials,
work-in-processes and finished goods. Here, the less
stock of materials and work-in-processes manufacturing
industry has, the worse the rate of production is. Inversely,
the more manufacturing industry has, the more expen-
sive the cost to support them is. Thus, it is important for
us to balance them efficiently. Also, it is necessary to
make rules such as “When should you produce goods?”
or “How many goods should you produce?” Hence,
inventory problems are to decide appropriate times to
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produce goods and to determine appropriate quantities
of goods. Therefore, it is very important to obtain as
more useful information as possible to solve inventory
problems. The demand may be deterministic in some
situations, or probabilistic in other situations. In addition
to this, we must get as more useful inventory informa-
tion as possible such as lead time, ordering cost, holding
cost, shortage cost and so on.

Hitherto, in previous papers, for example, Pasternack
and Drezner (1991), H. Shang Lau and A. Hing-Ling
Lau (1991), Parlar and Goyal (1984), Khouja et al.
(1996), Yoshikawa and Tanaka (1997), and Shimosakon
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et al. (1984) proposed optimal ordering policies on sub-
stitutable two-commodity system. These papers are based
on the circumstances of suppliers. If one commodity
becomes surplus stock, they are reused as a substitution
of the other commodity. Consequently, inventory carry-
ing cost is reduced. However, we have to consider the
shortage cost. Shimosakon et al. (1984), and Tanaka et
al. (1997) took it into consideration. They explained the
model on one way substitutable two-commodity inven-
tory control system. Strictly speaking, when one com-
modity becomes out of stock, the customer who wants
to buy the commodity can purchase another commodity
as a substitution for one commodity. But in actual situa-
tion, there exists a problem of both way substitutable
two-commodity inventory control system. For example,
consider the two commaodities which are composed of a
high quality machine and a low quality machine such as
a computer product. A customer who can buy the high
quality one can purchase whichever he/she likes. But a
customer who can only buy the low quality one can only
purchase the low quality one. However, we must con-
sider the case where the value between company A’s one
and company B’s one is the same grade such as A’s
DVD and B’s DVD. If one commodity is out of stock, a
customer can purchase another commodity as a substitu-
tion for one commodity.

On the other hand, there are problems of how to al-
locate the resources to many areas so as to minimize the
total expected cost or to maximize the total expected
profit. These problems are reported by Tanaka et al.
(1995; 1997), and Yoshikawa and Tanaka (2001). They
are called resource allocation problems, and they are
applied production planning and so on.

In actual situation, we have to take both way substitut-
able two-commodity inventory control system into con-
sideration. In this paper, we deal with an optimal order-
ing policy on both way substitutable two-commodity
inventory control system. That is, there is a problem of
how to allocate the produced two kinds of goods in a
factory to m areas so as to minimize the total expected
inventory cost. The demand of each area is probabilistic.
In particular, we assume the exponential distribution as
a probability density function of demand. Actually, in
previous papers, Shang Lau and Hing-Ling Lau (1991),
Shimosakon et al. (1984), and Yoshikawa and Tanaka
(2001) employed the exponential distribution. Moreover,
we provide numerical examples to explain the problem.

2. THE SUBSTITUTABLE TWO-
COMMODITY INVENTORY MODEL

To develop the stochastic, single-period, both way
substitutable two-commodity inventory model, we de-

fine the following assumptions and notation.

2.1 Assumptions

In our model, the lead time is zero. During the pe-
riod, a depletion of the inventory of the two commaodi-
ties are induced by customer’s demand described by the
random variable y >0, i=12, where the notation
i defines the commodity i. When commodity 1 be-
comes out of stock, the customer that wants to buy the
commaodity purchase the commodity 2 as a substitution
for the commodity 1. Inversely, when commaodity 2 be-
comes out of stock, commaodity 1 is substitutable for the
commaodity 2.

2.2 Notation

In our model, we use the following symbols.
i : commodity index, i=1,2.
a, : the inventory level before ordering for commodity 1.
x, : the inventory level after ordering for commodity i .
y, - the demand during the period, y, is a random
variable, y, >0,i=12.
z : the ordering quantity for commodity i(x =a +z ).
#(y .y, ): the joint probability density function of the
demand vy, ,i=12.
h : the holding cost per unit of the commaodity i .
p, . the shortage cost per unit of the commodity i
(p 2N ).
L(x,,x,): the expected cost function for given x and
X, over the period.
a,,, - the substitution ratio in the case of commodity i,
becomes out of stock, the other commodity i, is
substitutable for the commodity i, .

2.3 The Expected Cost Function
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Figure 1. A calculation method of the total of the ex-
pected inventory cost for both way substitut-
able two-commodity inventory control system

We determine an optimal policy so as to mini-
mize L(x,,x,) for given X and X, over the period.
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To analyze L(x ,x,), we divide the domain of L(x ,x,)
into 6 parts as shown in Figure 1. We consider the ex-
pected cost function of each part.

[Part 1]

Both commodities 1 and 2 are held in the part 1,
then we obtain the expected cost function L (x ,X,)
as follows.

Loox) = [0 T o =y +h, (x, - y,))
xg(y, . y,)dy,dy, @

[Part 2]

Commodity 1 is sold out while commodity 2 is
held in the part 2. From the assumption of the substitu-
tion, the «,, percent of the shortage quantities of the
commodity 1 (e, (y, —x)) are substituted from the
commodity 2. Therefore, the expected cost function
L,(x,,x,) isgiven as follows.

1! 72

Lo = [ [

+h 2 {(Xz _yz)_alz(yl -

[Part 3]

In the part 3, demands of the commodity 1 over the
upper limit that substitutes the commodity 2 for the
commodity 1 occurs. All the remaining stock is sold out
because of the substitution. Then, the expected cost
function L (x,x,) isrepresented as follows.

(xryz)

[P @-a,)y, -x)
x)} )60y, . y,)dy,dy, @

L(x %) =_[OXZ Liw P {(y, =x)=(x, - ¥,)}

xp(y, ,Y,)dy, dy, 3)

[Part 4]

Commodity 2 is sold out while commodity 1 is
held in the part 4. From the assumption of the substitu-
tion, the «, percent of the shortage quantities of the
commodity 2 (a,(y, —X,)) are substituted from the
commodity 1. Therefore, the expected cost function
L,(x,,x,) isgiven as follows.

L,(x ,x)= II

1 {(Xl _y1)_a21(yz —X,

(Xl Y1)

= [ p,@-a,)(y, - %)
)} oy, .y, )dy,dy, (4)

[Part 5]

In the part 5, demands of the commodity 2 over the
upper limit that substitutes the commodity 1 for the
commaodity 2 occurs. All the remaining stock is sold out
because of the substitution. Then, the expected cost
function L, (x,x,) isrepresented as follows.

11772

Logox) =] [ e mpz{(yz X,)=(% ~,)}

xg(y,, Y, )dyz dy, 5)

[Part 6]
Both the commodities 1 and 2 are sold out in the
part 6. Then, the expected cost function is given as

Logo) =[] m =)+ p.(y, - %))

X¢(y1 1 y2 )dyZ dy1 1 (6)
where

Iowjow¢(yi Y )dyz dyl =1.

Therefore, we obtain the total expected cost func-

tion L(x,x,) for given x and x, is represented as
follows.
L(X, , X 2)_ZL(X1, X,) ()

The aim of our research in the inventory policy is
to determine the optimal quantities (x,x,) that
minimizes the total expected cost function L(x,X,).

In our model, the substitution is limited only to the
case where a commodity becomes out of stock, and to a
part of the shortage expressed by the substitution ratio
a,,,a, . There may be the case where a customer sub-
stitute a commodity even if both commodities are not
out of stock. However, if we consider such situation, the
model will be very complicated one. Then, there exists a
case where we can’t solve analytically. Therefore, in this
case, we confined our model to enable us to solve ana-
lytically.

3. A FORMULATION OF AN OPTIMAL RE-
SOURCE ALLOCATION PROBLEM ON
BOTH WAY SUBSTITUTABLE TWO-
COMMODITY INVENTORY SYSTEM

In this paper, we consider an optimal ordering pol-
icy on both way substitutable two-commodity inventory
system. That is, we determine the optimal quantities x~
and X, " that minimizes the total expected cost function

L(x, 2)
3.1 Notation and assumptions

Here, we redefine all symbols and assumptions.

j areaindex, j=1,2,-
: the inventory level before ordering for commaodity
i forarea j.
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x . the inventory level after ordering for commodity i
forarea j.
y, : the demand during the period, y
variable, y, 20,i=12,j=12,
. the orderlng guantity for commodlty | for area
jo(X =8, +Z,).
¢(ylJ Y,;): the jomt probablllty density function of the
demand y, forarea j, i=12.
h. : the holding cost per unit of the commaodity i for
area j (This symbol does not depend on area j).
p, : the shortage cost per unit of the commodity i for
area j(p, >h ).
): the expected cost function for given x; and
x,, forarea j over the period.
iz : the substitution ratio in the case of commodity i,
becomes out of stock, the other commodity i, is
substitutable for the commodity i,
TC, (x,;,%,,) : the total expected cost functlon for area ]
TC (x,): the total expected cost function of commod—
ity 1 for area j with the non-substitutable
case.
TC, (x,;) : the total expected cost function of commod-
ity 2 for area j with the non-substitutable
case.

is a random

L(x

1j! 2

We consider the optimal resource allocation problem
on both way substitutable two-commodity inventory
system as the following assumptions.

1. The production is performed in one factory.

2. A factory produces two kinds of commodities.

3. The total amount of the commodity i (i=1,2) is less
than or equal to X, (i =1,2) because of the produc-
tion ability.

4. The number of areas we are going to allocate is com-
posed of m areas.

5. We must allocate these commodities to m areas so
as to minimize the total expected cost function.

In this paper, it is assumed that the production is
performed in one factory. Therefore, we can set up h,
for each area as uniform cost. As for h, , the decision
of h can be entrusted to manufacturer (Notice that
various establishment of h for each area is also pos-
sible). However, as for p, , the decision of p, can’t
be entrusted for manufacturer. Not a few losses might be
yield by giving the dissatisfactions to customer. The
degree of dissatisfaction to customer will differ among
each area. So it is difficult to treat p, uniformly, we
setup p, foreach area as different cost.

To solve this problem, we use the total expected
cost function that we have already discussed in previous
section. First of all, we formulate the total expected cost
function for each area. Next, we lead to all area’s total
expected cost function. Let x, (=0) be a number of
products of the commodity i(i=1,2) for area |

(j=12-
TC (x
]

1j! 2

-,m). Then, the total expected cost function
) forarea j isgiven as follows.

TC, (%,.%,,) = Z L (x,.%,)
- J‘:J .[oxzj {hl (% =¥) +h, (%, = yzj)}
><¢(y1J’ yzj)dijdyu
+J.0XZJJ‘:]j [pij(l_aiz)(ylj _le)
0, {0 = Vo) =@ (v, %)} 60, v, )dy, dy,

+J.oXZJ J.:ﬁw P; {(yu - X“,)—(ij h y”)}

(%;=Y2;)

xP(Y1j. Y)dy;;dy,;
(X, -Y1)

-i-.[oxlj LZJ+ [pzj(l_an)(ij _XZJ)
-i-h1 {(le - ylj)_an(yzj _XZj)}:|¢(y1j’ yzj)dyzidyli

+J"0X11 Ixtj+w P2 {(ij —ij) —(le - ylj)}

an

xP(Y1j.Y25)dY,;dyy;
+Ix1] J‘x2J { plj(yli _Xli)+ pzj(yzj _ij)}
><¢(le" yQi)dyzjdylj’ (8)

where p, is the shortage cost per unit of the commod-
ity i for area j. Therefore, an optimal resource allo-
cation problem on both way substitutable two-
commodity inventory system we propose here is repre-
sented as follows.

Minimize TCV = ZTCJ. (X, %,;)
j=1
subject  to Zx <X, 2% <X, (9
j=1
(%,20,x,,20, j=12,-,m)

Here, TCV is the objective function.

3.2 Characteristics of the proposed model

In this paper, our purpose is to allocate the com-
modities for area j so as to minimize the total ex-
pected cost function. However, it is hard to solve this
problem analytically. First, we examine the characteris-
tics of the proposed model. The TC (x,,X,;) in the
non-substitution case is expressed as a sum of the func-
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tion of x.
separable asTC,

and x,, only, namely, TC (x,X,) Iis
(x1 X%,,) =TC (X )+TC (x,;) . Be-
cause TC (x,,X,;) is a strlctly convex functlon we
can divide TC](x“, X,;) into  TC.(x,) and
TC,(x,;) , where TC (x) is the cost function for
given X for commoditylfor area j over the period
as shown in Sivazlian and Stanfel (1975). Therefore, we
can calculate the following subtraction easily.

A=TC, (x,)+TC, (x,))-TC, (x,.,,)

(XZJ y21)
X¢(y1,-* yzj)dyljdij

+J‘0)<ZJ vl.:ﬁ@{hz (ylj _le)+ plj(yZJ _X“)}

a, Z(ylj le)+a12plj(ylj_xlj)}

X¢(y1j’ yzj )dyljdyZJ'

(xl, yl,)

L
x¢(Y,;, Y,,)dy, dy,,

+J‘0Xlj -[XO:,+M{h1 (yzj - ij)+ pZi(yii B le)}

ay

X¢(y1]" yzj)dyzjdylj (10)
Here, we can derive Proposition 1 as follows.

21 1 (yu X1j)+a21p21‘(y21' —ij)}

Proposition 1. If a two-commodity inventory system in-
volves the both way substitutable property, then the total
expected cost decreases in comparison with the non-
substitutable case.

Proof. From equation (10), A > 0. Therefore,

[QED]

In order to investigate the effect of the substitution
ratio «,, and «, for this system, we differentiate
TC. (x x ) partlally with respect to «, and «, ,
respectlvely The following equation and Proposmon 2
are obtained.

oTC. (x“, ZJ)
oa

12

TC, (x,)+TC, (x,,)-TC, (%, %,;) > 0.

:_(p1j+hz)

(xzj’yzj)

X Xt .
S S R L

X Xz'_ iy Xz'_ 5
_alz(p1j+h2)jo ( i y]](_ j 2yl]
a, a,

(X, = Y,,)

alZ

xg(x,, + VY)Y,

X Xz' _yz'
+_[0 |:p1j [T)_{_ hz (ij - yzj')j|

X, =Y, (x, —v,)
X(_%]¢(le +;’yzj)dy21
a a,

12

X, =Y, (x, =v,)
X(_%]¢(le +;’yzj)dy21
a a,

12

=~(p, +h,)

(ij sz)
SO o,
aTC, (%, %,,)
oa

21

-x,)9(Y,, ¥,,)dy, dy,  (11)

==(p,, +h)

(Xi, %)

Iy“f “(y,,

Proposition 2. TC,(x,x,,) is a monotonically de-
creasing function of «, and a, .
Proof. From equations (11) and (12), we obtain

_ij)¢(ylj’y2j)dy2jdylj (12)

aTC, (X, X, ) aTC, (X, 21)

oa oa

12 21

respectively.

[QED]

Also, in order to show the effect of this inventory
system for each commaodity, we calculate first order and
second order partial differentiation of TC (x, X,,)
with respectto X and X, , respectively.

aTC, (x,,.%,,)
ox

1j

X (X2
=, [ [ gy, v,,)dy, dy,,

+h2 IXZJ (ij - yzj)¢(xlj ! yzi)dy2j
{ p“(l 0[12)4' 12772 }

(ij’ygj)

X i+
XZJ' i a.
Xj‘ J. ’
0 X

0!12—1 %2 (X'_y')
—( j B, |7 (6, = v (%, + 2=y, )y,

¢(y1j ' yzj)dyljdyzl'

alZ alZ

—h, [ (%, = ¥, 805, Y,y

_pljjozj L +M¢(y11 ) yzj)dyljdyzl
4 al2
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-1 X ( yzj)
+(““ jpl,jo( Y, )(x, +—2— y ydy,,

alZ

+hj I
(x1, Vi)

+J~ a2l

X¢(X1j ! yzj )dyzj

1- 1j (1j_y1j)
{ - jpz,j (4, =9, )00, %, + =)y,

21

12
(x“ %)

“2g(y,,, Y,;)dy,,dy,,

(P, (0 = %) =, (P, + (Y, — %))

21

_pZJJ. J‘ (X11 Y1J)¢(y1] yzj)dyzjdyu

a2l

1 ( 1j _ylj)
_( a jpzjj. 1]¢(y1]’ 2] )dylj
0!

21 21

[1_
+
aZl

+ijJ‘X +M(y21 N X21)¢(Xij ' ij)dyzi
a2l

2]

aZl

jpz,j Y, (Y, %, ﬂ)dyu

_pljj: J‘:J $(Y,;0 Y,,;)dy,,dy,;
_psz.w. (yzj - X21)¢(X1j , ij)dyzj

[

a2l ¢(y1, y,;)dy,dy,,
_pl,jo L” Ay, Y,,)dy,dy,,

%
—pz,j j o) B0 Y, )Y,

a2l
v (py ) [ a0y, )y, dy,
(xi, Yij)
21(p2,+h>j “ (Y, — %)%, Y,)dy,, (13)
(% -%;)
% h [ e gk, y,,)dy,,

+ plj on ¢(X1] ! yzl)dyzj
(X,; = ¥,;)

alZ

+a, (p, +h,)[ 7 g0, + Y.y,

_alz ( plj + h2 )J‘OXZI ¢(X1j’ yzj )dyzj

_pzl.[x +(X1]7y11) ¢(X1J ! yzj)dyzj
Bz

h1 + pz‘ X (Xl- - yl)
(—]J 5y 0y + oy 1a)
a21 a21

(X;=Y,;)

h2 J‘ 2j J.olJ al2 ¢(y1j’ yzj)dyljdyzj

0

oTC, (Xl,! 2])
OX

2j

0 f, I, 90 v )dy, by,

Py .[0 " .[x Sy AR AL
U a12

+(x1j’Y1j)

T
o, o [

_alz(plj + hz)

}+(x2,fy2,)

#(Y,;0 ¥,;)dy, dy,;

XJ‘x, " (yij - le)¢(ylj’ 2])dy1] (15)
o'TC. (X, %) Xm(xzryz,)
axfjj - h2 Io o ¢(y11’ zj)dyu

+pzjj0w¢(y1j 1 ij)dylj

(X, - y“))Oly

1j

X
+a,, (p,; +h )L Py, %, +

21

%
_a21(p2j +h1 )J‘O ¢(yljn zj)dy“

_plj“‘xl +(x2j;;,zj) ¢(y1j1xzj)dy1j

i

hz +p1' X2 (Xz-_y2-)
(—jl §0, =y, (e
alz

al?
As for equations (14), (15), (16), these equations can be
calculated by similar process used in equation (13).
From the above differentiations, we can obtain the
following equations.

oTC, (X, X,,)

lim—— — =N a7
X > aXli
aTC. (X, X,.)
i 1j’72j
im————=h, (18)
XIZIiTao axzj

While, we can derive Proposition 3 using the initial

stock level (a,;,a,) and
aTC, (X, 2) oTC, (X, 2J)
X, X,

Proposition 3. We have the following optimal ordering
policy. If
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oTC, (%) _o 0 TC k)

OX. . OX

1j 2j

then we should take an order. If

oTC, (%, %,) oTC, (%, %)

and ———=>0,
OX,, OX

2j

then we should not take an order. Notice that x, =a,
X,, = a,,(On account of an initial inventory level, we
setz, =0and z, =0, respectively. ).

Proof. If both first order partial differentiations of
TC (x,,x,;) with respect to x, and X, are nega-
tlve then the object function TC J(X0 X%, ) decreases.
Therefore, when the inventory Ievel is less than
(a,,,a,;), we need to order. If both first order par;t(lal
differentlatlons of TC,(x,,x,,) with respect to 1
and x,, are nonnegative, then the object function
TCj(x1 X,,) increases. Therefore, when the inventory
level is larger than or equal to (a,;,a,,) , we need not to
order. [Q.E.D.]

3.3 A case of exponential distribution

In this section, we formulate the total expected cost
function TC,(x,X,;), and the characteristics of this
system. Therefore, the optimal inventory policy will be
calculated when the combination of (x,X,,) that
minimizes the total expected cost function is obtained.
Now, we assume that the demand distribution is ex-
pressed as the exponential distribution. This assumption
is done by Shang Lau and Hing-Ling Lau (1991), and so
on. Namely, the joint probability density function of

demand, ¢(y,,,Y,,), is expressed as
¢(ylj ! ij) = /7’1 2’2 exp |:_ﬂ’1 ylj - ﬂ’z yzj:l | (19)

where 2, (i=1,2) is a shape parameter of exponential

distribution of the demand of commodity i forarea j.

The method that can analytically solve the proposed
model is only the case where the density function is the
exponential distribution. We confined the problem and
emphasized the derivation of efficient solution algo-
rithm. In general, if we use nonlinear theory, we can
solve the problem even if we assume the other distribu-
tions. But, in that case, it is very hard to solve analyti-
cally. If we force to solve the problem, it will be solved
by numerical calculation.

From the equations (8) and (19), total expected cost
function TC,(x,x,,)(j=12,---,m) when the com-
modity 1 and 2 are allocated X, and X, respectively,

forarea |, isexpressed as
hl h2
TC, (X, %,)=hx, +h,x, T

1 2j
+ {h1 + pu(l_au) - hz 0(12} exp |:_21~X1j:|

1j

h (- —h
+{ 2 +p2]( /10[21) - }eXpl: /121 2J:|

2]

h + a A X
( p“) 12 2] p|: ﬂullxlj_ 1j 21:|

1]( 12 2])
(h + pZJ)azl 1j Xp|: lZ]le —ﬂ,zszj:|
21(121 21 1]) a21

((h +p)a, (O +p)aj
+ exp[ g “—/12]_x21_].
(4 “12’121) 4, —a, i)

277

12

(See Appendix) Thus, all area’s total expected cost
function TCV is expressed as

TCV =Y TC, (x,,,X,,)

j=1

m h2
=Z hox, +hx, ——-—
L A

1j 2]

+

{hl : plj(l;au)_hzalz}exp[_ 1‘X1j:|

1j
+{h2 +p,(0-a,)-ha,}
)

exp[ 121 2J:|
2]

h +p )a’ld A X
+( 2 p11) 12772 p|: ﬂllxlj_ 1j 21:|

/11](/1' 12 21)
(h + pZJ)azl 1j Xp|:— lZ]le ﬂ,zszji|
21(121 21 1]) a21

[(h o e, (. )amj }
+ ! exp[ X —ﬂzszj] .
A —a i ) A —a.l)

12772 2j a, 1j

12

Now, it is not always guaranteed that the above
TCV has limit value with respect to x, and X, . In
general, if TCV has a convex function, we can solve
the above problem using nonlinear theory. But we em-
phasize that we can construct an efficient solution algo-
rithm. Therefore, we only deal with the case that TCV
is a convex function with respectto x; and X, . Then,
we must obtain the condition that Hessian matrix is
greater than or equal to 0. From Hessian matrix, we
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easily derive the following conditions. That is,
Ay >apd,, A, >ayd; and h > ah

12°72j ! 12772

To solve this problem, we introduce Lagrange’s
multiplier gz, 1, . Let L(x,X,;x,p,) be Lagrangean
function. This function is represented as

ZTC (%, %,;)

tH, (lej - x1 j+luz (szj - xz )v (20)
j=1 j=1
where

X = (Xn’xiz""’xlm)'

Xz _(X21’X22’“.’X2m)'

L% X5 44 14,)

From equation (9), x, >0, x,,20(j=12,--,m).
The necessary and sufficient conditions to solve the
problem expressed as (9) are described as follows.

oL
_ _ h1
OX

1j

a, ZJ(h + plj) exp /11,X1, _llszj
A —a d ”

1j 127%2j
Sy * Pyy) )exp{_ A "%Xj
a21

ﬂaﬂ

2171j

{ a12(h +p11)+(h +le }expl: 1j 11]

A —a A la/l

12772 2171j

2j 2J:|

4 20, (j=12,---,m),
%: 2 { a?l(h +p21)+(h +p2 }exp[ /121 QI:I

2j

_/1 (au(h +p) @ +p2j)j
1j

><exp[—/1ljx1j

atre) L
A )

2171

h + A X
12 21( pu) p ;L“X“_ 1j°2]
/I -a, A a

12772

. (au(h +p) @ +p2j)]
2j

A —a A /10:/1

12772 2171

XEXpI: 1j 11 21 2J:|
+u, 20, (j=12,---,m),

2

h, >a,h .

Xijzo, /JZ(ZXZJ.—XZJ:O,
j=1

Hy (Z The
j=1

oL oL :
X, =0, X, —=0 (j=124-,m),
ale 2j
w =0, u, >0 (21)

Here, L represents the Lagrangean function. A
mathematical solution method we consider here is
Karush-Kuhn-Tucker condition and complementariness.
Applying these conditions, the inequalities oL /0ox; >0
and oL/ox,; >0 are derived easily. Also, using com-
plementariness, X -oL/ox; =0 and X, -0L/0ox,,
are obtained eaS|Iy Strlctly speaking, |f aL/ X, _O
then x >0. Orif oL/ox, >0, then x =0. S|m|-
larly, |f 6L/6x =0, then x >0 Or if 6L/6x >0,
then xJ 0.

Now, for the optimal solutions of the problem (9),
that is to say, X;,,X;,,

[1] the necessary and sufficient condition that satisfies
x;. =0(j=12,---,m) is expressed as follows:

—h, +{—a12(h2 +p,)+h + p“_}
aii, (

12772

((h, +p,;) A%,
+——exp| ———
Ay —a,h a

12772 12

2a A, +p,,)

217 1j

ﬂ—a/i

217 1j

+ 12 lj(h +p1]

exp[ -2, ]

xp| -4, %, ]

ach (o, 2])
OX

1j

=A (22)

[11] the necessary and sufficient condition that satisfies

x;. =0(j=12,---,m) is expressed as follows:

H, Z_h +{_a21(h + p21)+h2 + pZJ}

+ 21 lj(h + ij)eXp|: ﬂZJX11:|
aZl

ﬂ’z 0(2111]

2a A (h +p,.)
12772\ 2 1j exp[ y 1J:|
/1 _alzlzj

h
P TAL L ST fy(h + Py) exp [—lljx“]
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oTCV (x1j ,0)
OX

2j

= A (23)
We have to discuss whether allocate x,, for each
area or not. Then, we substitute X, =0 for oL/ 0x,,
in the equation (21). We can derive the equation (22)
easily. Similarly, we can also derive the equation (23).
Now, we consider the following equations.

aTCV (x,,.X,))

aTCV (x,,, X
TV X)) po=0, ———wtal g

OX OX

1j 2]

We check the difference between —0TCV (x, X, )/ 0x,,
and . If —OTCV (x,;,X,,)/ %, — u, is greater than 0
we allocate X, (> 0). If it is less than or equal to 0, we
don’t allocate (x =0). Similarly, same rule is applica-
ble to commodltyz Let g, (X, %), 9,,(X;,x,) are
the inverse functions of —0TCV /ox, —0TCV /0x,, ,
respectively. The solutions of the above equations are
obtained as follows.

1j = glj(,ul !ij)’ ij = gzj(xlj‘/uz)

We deal with the case where the objective function
(TCV ) consists of a convex function. Now, we must
pay attention to the left side of objective function. Then,
the left side, the more allocation of X, is, the less the
value of objective function is. Inversely, the right side of
objective function, the more allocation of x, is, the
larger the value of objective function is. Because the
objective function is a convex function. So the function
—0TCV /ox, is a monotone decreasing function on the
left side (Take notice that oTCV /ox, is a monotone
increasing function on the left side). Therefore, the in-
verse function g, (x,,x,;) also becomes a monotone
decreasing function.

Hence, using equations (21) and (22), the optimal
solution of x (> 0) is represented as

aTCV (0,%,))
g1j(/’l17xzj)’ Osl’li <K—— = j!
* ale
1j =
aTCV (0, %, )
0, po 2= A
OX

1j

Similarly, using equations (21) and (23), the opti-
mal solution of X, (> 0) is represented as

OTCV (x,,,0)
gzj(xljlﬂz)l Ogluz<_—: j!
* aij
X, =
Y oTCV (x,,,0)
0, U, 2—————=A_.
X,
As both g, (x,,x,) and g, (x, X, ) are mono-

tone decreasing functions, so if 4, and g, satisfy the
following conditions, they will the optimal solutions of
Lagrange’s multiplier x and g, , respectively.

zm:max {0’ glj(y::’xzj)} =

=1

imax{o, gzj(xlj,y;)} =X,

=t

Now, we arrange the right side of inequalities (22)
and (23) in large orders. And we renumber the indexes
from the left side. Namely, 11, 12, .-, 1mand 21, 22,

.-, 2m, respectively. Those are represented as follows.

AZAZ2A, AZAZ2A,

We investigate from the right side, namely, A_

and A . For yx and u, we assume the following
rearrangement.
A ZAZ2A 2u 2A 22 A
Anzp&z = "ZAM Zﬂ; Z'A&H 2"’ZA2m-
Now, for A >,u >Al (j=21,2,---,m), we have
to repeat until we get
k *
zglj('ul’XZj): X, . (24)
j=1
Similarly, for A2 > u > AZ e have to repeat
until we get
! *
2 0,(%,. ) =X, . (25)
j=1

We obtain x, =0 for j>k+l and X, =0 for j=>
I+1, respectlvely, o) ,u1 and ,uz satlsfy the equa-
tions (24) and (25). The equation (24) means that if
m > k ,then we don’t allocate m areas for commodity
1. But if m=k, then we allocate m areas for com-
modity 1. Similarly, the equation (25) means that if
m > | ,then we don’t allocate m areas for commaodity 2.
But if m=1, then we allocate m areas for commodity
2. We take a notice that we can’t solve these equations
analytically. But we have a unique solution because of
the convex function. However, if we use Newton
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method, solutions are obtained easily. Moreover, all

area’s total expected cost TCV can be calculated.
Here, we specify an algorithm to search for the op-

timal solutions x (j=12,---,m) and the total

1j? 2]

expected cost TCV .

[SOLVING ALGORITHM]

Step 1. For commodity 1 and 2, now we set up k =m
and | =m respectively. We ask for , (i=12)
that satisfies the following equations:

Zglj(ﬂl’xzj):Xl 1 ZQZJ(le’ﬂz):x
j=t j=1

Step 2. We ask for X, x,, (j=1,2,---,m) using the
following equations:
_ach(x“, X,;) u :O’_aTCV(x“, X,,) oy 0,
X, oX,,
(j=12,---,m).

Step 3. For commodity 1, we ask for A, (j=12,---,m)
using equation (22). Similarly, for commaodity 2, we
ask for A, (j=12,---,m)using equation (23).

Step 4. For commodity 1 and 2, we rearrange A, and
A,; inlarge order.

AuZAiz2 "ZAlm’ AuzAzzZ”'ZAZm'

Step 5. Now, if A >u >A and A >u 2A
then the optlmal Lagranges multipliers ,u
= and g =, arefound (Notice that A
=A =0, A = Au _oo) Therefore, the op-
timal~ solutions x“,x2J (j=12,--,m ) for
commodity 1 and 2 are given. Also, the total
expected cost TCV is obtained. Stop. If 4,
and g, are not found in the above ranges, we

setup m= m-1 and Go To Stepl.

4. NUMERICAL EXAMPLES

This section gives examples in order to illustrate
the results of 3.2. Each parameters of our problem is
represented in Table 1. Here, we try to allocate two
commodities for 10 areas so as to minimize TCV . Now,
let X, =200 and X, =200, respectively. Consequently,
the results of our problem are shown in Tablel, the op-
timal solution x, and x; (j=12,-,m) and the
expected cost function TCV  are obtained. In this case,
value of the TCV is 2,594.7. From Table 1, the total
values of the optimal quantities for commodity 1 and 2
are 96.19 and 147.97, respectively(The minimum value
of this model). Note that the investment quantities over
the optimal order quantities are inappropriate, because

TCV is the convex function (TCV increases).
Second, we explain the Table 2. Each parameter of
our model in Table 2 is the same situation in Table 1
except X, =10 and X, =10. The results of our prob-
Iem are shown in Table 2 the optimal solution x and
x ,, (J=12,---,10) and the value of TCV are ob-
tained. In this case, the value of TCV is 7,018.2.
First of all, we examine commodity 1. We compare
,u: with A (j=12,---,10). The arrangement in large
order is
A =188.99> A =170.89 > A =140.02> A =129.97 >
A =12584> A =1045> y (= 94.16) > A =85.85>
A =8497>A =8283>A =7605.

As A, A, A, A arelessthan u, , we don’t
allocate these areas at all. Therefore, we determine to
reallocate the remaining areas 3, 4, 5, 8, 9, 10, so mini-
mizing TCV is achieved. Similarly, for commodity 2, the
arrangement in large order is

A, =7957> A =7545> A =7301>A =6375>
A, =49.91> 1 (=48.87)> A =4868> A =48.41>
A =4620>A =4333>A =4031,

As A, A, » A A are less than @,
we don’t aflocate these areas at all. Therefore, we de-

termine to reallocate the remaining areas 1, 2, 4, 6, 7.

Table 1. The optimal allocation quantity and the total of the
expected inventory cost under the whole parame-
ters of all areas

Area| A | A | Py | Py | X X, TC,
1 [011]0085] 50 | 20 | 11.88 | 14.17 [ 2832
2 [015[0092]| 49 | 18 | 890 | 1167 | 2206
3 [017]0058]| 55 | 23 | 953 | 1991 | 305.1
4 1015]0065| 60 | 19 | 1037 [ 1594 | 2810
5 0210074 53 | 15 | 772 1197 | 2043
6 1013[0083]| 48 | 27 | 978 | 1602 277.1
7 [012]0077 51 | 23 [ 1107 | 1594 | 2918
8 [014]0063]| 62 | 17 | 1126 | 1543 | 287.0
9 [018]0082] 46 | 16 | 772 | 1161 2018
10 [022[0071[ 63 [ 21 | 797 | 1530 [ 2428

total | 96.19 | 147.97 | 25947

X, =200,X, =200,h =15,h =10,a =05,
w =00, =00

Table 2. The optimal allocation quantity and the total of the
expected inventory cost under the whole parame-
ters of all areas

Area /1“ /12] p“. p2j X, X, TCl
1 (0211|0085 | 50 20 0.00 | 3.10 | 743.9
2 1015]0.092 | 49 18 000 | 1.35| 619.2
3 ]0.17|0.058 | 55 23 265 | 0.00 | 798.3
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4 10.15[0.065| 60 19 156 | 0.01 | 775.8
5 [021]0.074| 53 15 142 | 0.00 | 543.3
6 [0.13]0.083 | 48 27 0.00 | 2.84 | 7373
7 1012]0.077 | 51 23 0.00 | 2.70 | 793.0
8 10.14|0.063| 62 17 151 | 0.00 | 800.4
9 ]0.18]0.082| 46 16 0.40 | 0.00 | 584.6
10 1022|0071 | 63 21 246 | 0.00 | 616.8
total 10.00 |10.00 | 7,018.2

X =10,X, =10,h =15,h =10,a, =05,a, =02

u =94.16, 1 = 48.87

In the numerical examples, we assumed the number
of areas as 10. An important idea we consider here is to
construct an efficient algorithm. That is, the efficiency
of the computation. If we apply our proposed algorithm,

we can solve the mathematical problem at most 20 times.

Generally speaking, if we have m areas, the complex-
ity of problem is reduced to 2m times. Our solution
algorithm will very efficient.

5. CONCLUDING REMARKS

In this paper, we have dealt with an optimal order-
ing policy on both way substitutable two-commodity
inventory system. That is, there is a problem of how to
allocate the produced two kinds of goods in a factory to
m areas so as to minimize the total expected inventory
cost. First of all, we have formulated the model. In par-
ticular, we have assumed the exponential distribution as
a probability density function of demand and have for-
mulated the solution algorithm to carry out the optimal
ordering policy. Moreover, we have provided numerical
examples to explain the problem. In example, we at-
tempted the ordering policy for 10 areas. One example
is the production ability is larger than the total of each
area’s optimal order quantity. This example means the
investment quantities over the optimal order quantities
are inappropriate, because TCV is the convex function.
The other one is the production ability is smaller than
the total of each area’s optimal order quantity. In this
case, we used up the production ability. Take notice that
commodity 1 and commodity 2 are not allocated on
some areas. This consequence is corresponding to the
solution algorithm mentioned in 3.2.

Essentially, inventory control activity must be lasted
permanently. In this paper, we dealt both way substitut-
able two commodity inventory system on single-period,
but in future, we have to investigate this system on

multi-period, for example, using Dynamic Programming.

Moreover, both way substitutable three commodity or
more, should be researched. Also, we need to examine
the estimation method of parameters used in our model.

APPENDIX

Derivation process of TC, (x ) using equation (8)

1j! 2]
and (19)
Each partof L (x,,X,,) iscalculated as follows.

[Part 1]

L (%, %) = ,[ JZJ h (%, = ylj)+hz(X21_yzi)}

XA, 2, exp|:—/1ljy1j —ﬂzjyzj] dy, dy,
h
=hx, +hx,, ——1— 2
11'
h1 h,
+ exp A “
A /1
+ h1 I exp
2J 21
A /1
hl
N jexp( 1j 11_121)(21)

1j 2j

[Part 2]

L(x,.%,) =" I

+h, {(le

(xz,fyz,)

[P, @-a,)(y, - x,)

- yzj)_alz(ylj - le)}]

XAy 4, EXP [_’luyu _’lzjyn] dy,,dy,,

A

2] 1j

:|:—h—+hX +/1i{p11(1 0(12) a, 2}

X exp( A“ X, )

A

2j 1j

h 1
+|: - _7{p11(1 0!12) a, z}

ﬂz'alz
_“]—{plj(l alz) a, 2}

1j a, 21)

a,p, 4, (1-a,
_M} exp (4, %, = 4, %,,)
(A =y’

p1]ﬂ-2] 21(1_0‘12) p“ﬂ,zj 12(1—a12)
A, —a,l (4,

12772

12 21)
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A

ne

xexp(

[Part 3]

LS(le’ 21)

2
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122)

A
2’1 j Xl j XZ j
alZ

A
¢{p1;(1 alz) @, 2}}

- J.OX” J.:I+M Py {(ylj - le)_(XZj - yzj)}

x2,,A,, exp| —4

(O( ) p1, 2 a,
+

ljylj _ﬂ’zl'yzj] dyljdyzj

a,(a, -1)

— pl] 2j 2]
A

-a, A (4,

127%2j

a, ZJ)

za

plj/IZjalz } ( ﬁ'
exp X 1] —X
( 12 21) alZ
+{ p11/12] 12 pljﬂ“m 12(0! _l)}
11( —a, 2,) ( a, 21)
xexp(— ' /lzszl)
[Part 4]
(xl,—yl,)

L, (X, %) = I‘“I

+h1 {(le - ylj)_azl(yzj -

[p,, @-a,)(y,, —x,

%)} ]

)

XA A, €Xp [—ﬂljylj - ﬂzjyzj] dy, dy,,

A

1j

xeXp(

h

1

2j

AZJXZJ)

[ 1
+ —_— e ———
A A,

{ pzj 1- a21) a21h1 }

:{—h—-i-h X +%{p21(1 az1) aul}}

A.a,
- — {ij(l an) Oy 1}
ﬂzj(ﬁz' ay 11)
leZJ 1](1 )
- 1%~
( Zl 1]) ( J 2J 21)
+{ pzjﬂ"xlj (1—0621) p2j 1j 21(1 0!21)
ﬂ’] aﬂllj ( 21 1])

A
_%{pZJ(l az1) a211}}

ZJ 21 1])

x X —ﬁx -2 X
p 1 2j "2
a21

[Part 5]
LS(le’ 2]
= J.Oll LZJ_+M P, {(yzj' =%,,) = (%, = yu)}
x4y, €XP [_Auyu _/lzj‘yn] dyzjdy1j
_ pzj/l’xl’(aﬂ_l) pz; 1j 21(0! )
/1 a?lllj ( o, 11)
A a A
+ pZJ — eXp _ixu‘_ﬂzszi
/12j ()L 0!2111]) 0!21
+ p2] 1j 21 pZ] 1j Zl(a 1)}
lzj(ﬂ’z' @y 1;) (ﬂ’zj @, 1;)
xexp(— /121’(2,)
[Part 6]

Le(xlj’ 21) J .[ pll(yll X11)+p21(y2J_ 21)}

XA, A, EXP |:—/1“_ Yo = A Vs :| dy, dy,

P Py
:(T+1—;Jexp(— " /121x21)

1j

Therefore, the summation

6
Z L (%)
k=1

becomes the right side of TC (x,,,X,,)-
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