Protective Effect of the Inhibition of PAF Remodeling and Adhesion Molecule on the Oxidative Stress of the Lungs of Rats Given Endotoxin Intratracheally

내독소에 의해 유도된 급성 폐 손상에서 PAF Remodelling 및 Adhesion Molecule의 억제가 폐장내 Oxidative Stress에 미치는 영향

  • Shin, Tae Rim (Department of Internal Medicine, Hallym University College of Medicine) ;
  • Na, Bo Kyung (Department of Physiology, Catholic University of Daegu College of Medicine) ;
  • Lee, Young Man (Department of Physiology, Catholic University of Daegu College of Medicine)
  • 신태림 (한림대학교 의과대학 내과학교실) ;
  • 나보경 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 이영만 (대구가톨릭대학교 의과대학 생리학교실)
  • Received : 2004.11.18
  • Accepted : 2005.02.01
  • Published : 2005.03.30

Abstract

Backgraound : There have been many reports on the pathogenesis of sepsis-induced acute respiratory distress syndrome(ARDS) but, the precise mechanism has not been elucidated. This study examined the protective effect of an inhibition of platelet activating factor(PAF) remodeling and the adhesion molecule on the oxidative stress of the lungs in rats with an endotoxin induced acute lung injury(ALI). Methods : ALI was induced in Sprague-Dawley rats by instilling an E-coli endotoxin into the trachea. Ketotifen and fucoidan were used respectively to inhibit PAF remodeling and adhesion molecule. The lung leak index, lung myeloperoxidase(MPO) activity, bronchoalveolar lavage(BAL) fluid neutrophil count and lyso PAF acetyltransferase activity(AT), were measured and an ultrastructural study and cytochemical electron microscopy were performed. Results : The lung leak index, lung MPO activity, BAL fluid neutrophil count and lyso PAF AT activity was higher in the endotoxin-treated rats. In addition, severe destruction of the pulmonary architecture and increased hydrogen peroxide production were identified. These changes were reversed by ketotifen. However, fucoidan did not appear to have any protective effects. Conclusion : The inhibition of PAF remodeling appeared to be effective in decreasing the endotoxin-induced ALI. In addition, this effect might be derived from the inhibition of neutrophilic oxidative stress. However, the inhibition of the adhesion molecules by fucoidan appeared to be ineffective in decreasing the endotoxin-induced ALI.

연구배경 : 호중구는 급성 폐손상에서 폐장내 염증반응에 중추적인 역할을 하는 것으로 알려져 있다. 호중구가 조직손상을 유발하기 위해서 폐모세혈관내로 격리(sequestration), 유착(adhesion) 및 화학주성 (chemotaxis)에 의한 폐장내의 간질 (interstitium)쪽으로의 이동 (migration)등의 과정을 거치며, 유착분자는 이 과정에서 호중구의 혈관내피세포에의 결합을 매개한다. 한편 폐손상에서 remodeling 경로를 통해 생성되는 PAF은 호중구 침윤에 화학유인물질로 작용하고 호중구의 유착과 활성화를 자극한다. 이에 근거하여 본 연구에서는 내독소로 유도된 의한 급성 폐손상에서 ketotifen을 사용하여 PAF remodelling을 억제하거나 fucoidan을 이용하여 유착분자를 억제함으로써 호중구에 의한 산화성 스트레스 감소에 따르는 폐손상 억제 효과를 확인하고자 하였다. 방 법 : 체중 300g 내외의 수컷 Sprague-Dawley에서 대장균 내독소의 기도내 투여로 급성 폐손상을 유도하고 PAF remodeling 및 유착분자의 억제 효과를 보기 위해 각각 ketotifen fumarate와 fucoidan을 내독소 투여 전 복강내 주사하였다. 각 군에서 단백 누출지수, 폐장내 MPO 활동도, 기관지 폐포세척액내 호중구수와 lyso PAF AT 활성도를 측정하였고 폐장의 미세 구조적 변화 및 산소기 생성을 관찰하였다. 결 과 : 내독소 투여군에서 대조군과 비교하여 단백 누출지수, 폐장내 MPO 활동도, 기관지 폐포세척액내 호중구수, 폐장내 lyso PAF AT 활성도가 증가하였고 조직내 호중구의 침윤 및 산소기 생성이 현저하여 폐손상이 유발되었음을 알 수 있었다. ketotifen 투여군에서는 내독소 투여군에 비해 단백 누출지수, 폐장내 MPO 활동도, 기관지 폐포세척액내 호중구 수, 폐장내 lyso PAF AT 활성도가 감소하였으며 조직학적 변화도 경감되었다. 반면 fucoidan 투여군에서는 단백 누출지수, 기관지 폐포세척액내 호중구 수의 감소를 보이지 않았고 내독소에 의한 조직학적 변화의 경감도 보이지 않았다. 결 론 : 내독소에 의한 급성 폐손상에서 PAF remodeling의 억제는 호중구에서 산소기 생성을 감소시켜 폐장 내산화성 스트레스를 감소, 이에 따라 폐손상을 경감시킬 것으로 생각되며 fucoidan에 의한 유착분자의 억제는 내독소에 의한 폐장 내 손상, 특히 호중구에 의한 손상을 억제하지 못하는 것으로 미루어 단순히 fucoidan을 이용하여 유착분자 활성화를 억제하는 것만으로는 폐손상을 경감시키는 효과가 없을 것으로 사료된다.

Keywords

References

  1. Demling RH. The modern version of adult respiratory distress syndrome. Ann Rev Med. 1995;46:193-202 https://doi.org/10.1146/annurev.med.46.1.193
  2. Bellingan GJ. The pulmonary physician in critical care 6: The pathogenesis of ALI/ARDS. Thorax 2002;57:540-6 https://doi.org/10.1136/thorax.57.6.540
  3. Chollet-Martin S, Jourdain B, Gibert C, Elbim C, Chastre J, Gougerot-Pocidalo MA. Interactions be. tween neutrophils and cytokines in blood and alve. olar spaces during ARDS. Am J Respir Crit Care Med 1996;154:594-601 https://doi.org/10.1164/ajrccm.154.3.8810592
  4. Dana R, Malech HL, Levy R. The requirement for phospholipase A2 for activation of the assembled NADPH Oxidase in human neutrophils. Biochem J 1994;297:217-23 https://doi.org/10.1042/bj2970217
  5. Abraham E. Neutrophils and acute lung injury. Crit Care Med 2003;31:S195-9 https://doi.org/10.1097/00003246-200301000-00030
  6. Albert RK. Mechanisms of the adult respiratory distress syndrome: selectins. Thorax 1995;50:S49-52 https://doi.org/10.1136/thx.50.Suppl_1.S49
  7. Rabinovici R. Platelet activating factor inhibition in sepsis: The end? Crit Care Med 2003;31:1861-2 https://doi.org/10.1097/01.CCM.0000065782.62705.89
  8. Snyder F, Fitzgerald V, Blank ML. Biosynthesis of platelet-activating factor and enzyme inhibitors. Adv Exp Med Biol 1996;416:5-10.
  9. Nagase T, Ishii S, Kume K, Uozumi N, Izumi T, Ouchi Y, et al. Platelet-activating factor mediates acid-induced lung injury in genetically engineered mice. J Clin Invest 1999;104:1071-6 https://doi.org/10.1172/JCI7727
  10. Sorensen J, Kald B, Tagesson C, Lindahl M. Pla. telet-activating factor and phospholipase A2 in pati. ents with septic shock and trauma. Intensive Care Med 1994;20:551-61
  11. Craps LP. Immunologic and therapeutic aspects of ketotifen. J Allergy Clin Immunol 1985;76:389-93 https://doi.org/10.1016/0091-6749(85)90659-1
  12. Patankar MS, Oehninger S, Barnett T, Williams RL, Clark GF. A revised structure for fucoidan may explain some of its biologic activities. J Biol Chem 1993;268:21770-6
  13. Goldblum SE, Wu KM, Jay M. Lung myelopero. xidase as a measurement of pulmonary leukotasis in rabbits. J Appl Physiol 1985;59:1978-85 https://doi.org/10.1152/jappl.1985.59.6.1978
  14. Bussolino F, Gremo F, Tetta C, Pescarmona GP, Camussi G. Production of platelet-activating factor by chicken retina. J Biol Chem 1986;261:16502-8
  15. Warren JS, Kunkel RG, Simon RH, Johnson KJ, Ward PA. Ultrastructural cytochemical analysis of oxygen radical-mediated immunoglobulin A immune complex induced lung injury in the rat. Lab Invest 1989;60:651-8
  16. Liau DF, Barret CR, Bell AL, Ryan SF. Functional abnormalities of lung surfactant in experimental acute alveolar injury in the dog. Am Rev Respir Dis 1987;136:395-401 https://doi.org/10.1164/ajrccm/136.2.395
  17. Delclaux C, Rezaiguia-Delclaux S, Delacourt C, Br. un-Buisson C, Lafuma C, Harf A. Alveolar neutrophils in endotoxin-induced and bacteria-induced acute lung injury in rats. Am J Physiol 1997;273:L104-12
  18. Windsor AC, Mullen PG, Fowler AA, Sugerman HJ. Role of the neutrophil in adult respiratory syndrome. Br J Surg 1993;80:10-7 https://doi.org/10.1002/bjs.1800800106
  19. Lee YM, Hybertson BM, Cho HG, Repine JE. Pla. telet-activating factor induces lung inflammation and leak in rats: Hydrogen peroxide production along neutrophil-lung endothelial cell interfaces. J Lab Clin Med 2002;140:312-9 https://doi.org/10.1067/mlc.2002.128181
  20. Bulger EM, Maier RV. Lipid mediators in the patho. physiology of critical illness. Crit Care Med 2000;28: N27-36 https://doi.org/10.1097/00003246-200004001-00004
  21. Ingraham LM, Coates TD, Allen JM, Higgins CP, Baehner RL, Boxer LA. Metabolic membrane and functional responses of human polymorphonuclear leukocytes to platelet-activating factor. Blood 1982; 59:1259-66
  22. Bussolino F, Camussi G. Platelet-activating factor produced by endothelial cells. A molecule with auto. crine and paracrine properties. Eur J Biochem 1995; 229: 327-37 https://doi.org/10.1111/j.1432-1033.1995.tb20472.x
  23. Martensson J, Jain A, Frayer W, Meister A. Glu. tathione metabolism in the lung: Inhibition of its synthesis leads to lamellar body and mitochondrial defects. Proc Natl Acad Sci USA 1989;86:5296-300
  24. Harris G, Doctor VM. The effect of 6-aminohexanoic acid and fucoidan on the activation of glutamic pla. sminogen by streptokinase. Blood Coagul Fibrinolysis 2002;13:355-9 https://doi.org/10.1097/00001721-200206000-00012
  25. Sharkey RA, Donnelly SC, Connelly KG, Robertson CE, Haslett C, Repine JE. Initial serum ferritin levels in patients with multiple trauma and the sub. sequent development of acute respiratory distress syndrome. Am J Respir Crit Care Med 1999;159: 1506-9 https://doi.org/10.1164/ajrccm.159.5.9809027
  26. Koh Y, Hybertson BM, Jepson EK, Cho OJ, Repine JE. Cytokine-induced neutrophil chemoattractant is necessary for interleukin-1 induced lung leak in rats. J Appl Physiol 1995;79:472-8 https://doi.org/10.1152/jappl.1995.79.2.472
  27. Lee YM, Hybertson BM, Cho HG, Terada LS, Cho O, Repine AJ, et al. Platelet-activating factor con. tributes to acute lung leak in rats given inter. leukin-1 intratracheally. Am J Physiol Lung Cell Mol Physiol 2000;279:L75-80 https://doi.org/10.1152/ajplung.2000.279.1.L75