DOI QR코드

DOI QR Code

Reaction Parameters on the Reactivity in the Preparation of B4C by SHS

자전연소합성법에 의한 B4C분말의 제조에 있어 반응성에 대한 반응변수의 고찰

  • Shin, Chang-Yun (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University) ;
  • Yun, Ki-Seok (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University) ;
  • Park, Yeong-Cheol (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University) ;
  • Hayk, Nersisyan (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University) ;
  • Won, Chang-Whan (Engineering Research Center for Rapidly Solidified Materials, Chungnam National University)
  • 신창윤 (충남대학교 급속응고신소재연구소) ;
  • 윤기석 (충남대학교 급속응고신소재연구소) ;
  • 박영철 (충남대학교 급속응고신소재연구소) ;
  • ;
  • 원창환 (충남대학교 급속응고신소재연구소)
  • Published : 2005.01.01

Abstract

The preparation of B4C by SHS in $B_{2}O_{3}-Mg-C$ system was investigated in this study. In the preparation of B4C, the effect on reactivity and reaction products of the initial pressure of inert gas in reactor, the content of Mg and C in mixture was investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 25 atm, and as the pressure increased, the concentration of unreacted Mg decreased and combustion temperature increased. At the initial inert gas pressure in reactor of 25 atm, the optimum composition for the preparation of pure B4C was $2B_{2}O_{3}+6.3Mg +0.94C$. The B4C synthesized in this condition had an irregular shape and the particle size of $1\~3{\mu}m$.

[ $B_{2}O_{3}-Mg-C$ ]계에서 자전연소합성법에 의한 C의 제조카 본 연구에서 조사되었다. B의 제조에 있어 반응기내 불활성 가스의 초기 압력, 혼합물내의 Mg와 C의 함량이 반응성과 반응생성물에 미치는 영향이 조사되었다. 본 반응계에서 자전 연소합성 반응이 가능한 반응기내 불활성 가스의 최소 초기 압력은 25기압이었다. 압력이 증가할수록 미반응 Mg의 농도는 감소하였으며 연소온도는 증가하였다 25기압의 반응기내 초기 불활성 가스 압력에서 순수 B의 제조를 위한 최적 조성은 $2B_{2}O_{3}+6.3Mg+0.94C$이었다. 이 조건에서 제조된 B는 부정형으로서 $1\~3{\mu}m$의 입자크기를 가지고 있었다.

Keywords

References

  1. I. J. McColm, 'Ceramic Hardness,' Plenum, New York, 228 (1990)
  2. N. Yu, F. Romero-Borja, Z. H. Zhang, X. T. Cui, J. R. Liu, L. T. Wood, W. K. Chu, D. Marton, J. W. Rabalais, K. M. Forster, and R. R. Reeber, 'Formation of Boron Nitride and Boron Carbide Composite by Nitrogen Implantation at Elevated Temperature,' Appl. Phys. Lett., 12 [20] 1643-45 (1993)
  3. S. M. Joo, H. S. Kim, and C. W. Won, 'Synthesis of $B_4C$ Powder by SHS Process,' Kor. J. Mat. Res., 6 [3] 264-74 (1996)
  4. G. Goller, C. Toy, A. Takin, and C. K. Gupta, 'The Production of Boron Carbide by Carbothermic Reduction,' High Temp. Mat. and Proc., 15 [1-2] 117-22 (1996)
  5. F. Thevenot, 'Boron Carbide-A Comprehensive Review,' J. Eur. Ceram. Soc., 6 [4] 205-25 (1990) https://doi.org/10.1016/0955-2219(90)90048-K
  6. A. Alizadeh, E. Taheri-Nassaj, and N. Ehsani, 'Synthesis of Boron Carbide Powder by a Carbothernic Reduction Method,' J. Eur. Ceram. Soc., 24 [10-11] 3227-34 (2004) https://doi.org/10.1016/j.jeurceramsoc.2003.11.012
  7. S. Mierzejewska and T. Niemyski, 'Preparation of Crystalline Boron Carbide by Vapour Phase Reaction,' J. Lesscommon Met., 8 [6] 368-74 (1965) https://doi.org/10.1016/0022-5088(65)90077-9
  8. K. Ploog, 'Composition and Structure of Boron Carbides Prepared by CVD,' J. Crys. Grow., 24-25 197-204 (1974) https://doi.org/10.1016/0022-0248(74)90304-2
  9. A. Sinha, T. Mahata, and B. P. Sharma, 'Carbotherrnal Route for Preparation of Boron Carbide Powder from Boric Acid-Citric Acid Gel Precursor,' J. Nuc. Mat., 301 [2-3] 165-69 (2002) https://doi.org/10.1016/S0022-3115(02)00704-3
  10. J. H. Lee, C. W. Won, S. M. Joo, and D. Y. Maeng, 'Preparation of $B_4C$ Powder from $B_2O_3$ Oxide by SHS Process,' J. Mat. Sci. Lett., 19 951-54 (2000) https://doi.org/10.1023/A:1006760020130
  11. T. A. Zhang, A. H. Dou, H. Yang, and Q. L. Ding, 'Preparation of Boron Carbide by Magnesium Reducing-SHS,' J. Northeast. Univ. Nat. Sci., 24 [10] 935-38 (2003)
  12. A. G. Merzhanov, 'Reviews : Rundamentals, Acheivements, and Perspectives for Development of Solid-Flame Combustion,' Russ. Chem. Bull., 46 1 (1997) https://doi.org/10.1007/BF02495340
  13. A. G. Merzhanov, 'Self Propagating High Temperature Synthesis : Twenty Years of Research and Findings,' Russia ISMAN (1989)
  14. J. Kiser and R. M. Spriggs, 'Soviet SHS Technology: A Potential U. S. Advantage in Ceramics,' Ceram. Bull., 68 [6] 1165-67 (1989)
  15. M. H. Ryu, J. H. Lee, C. W. Won, and H. Nersisyan, 'Synthesis and Characteristics of $LiCoO_2$ Powders Prepared by SHS Process,' J. Kor. Ceram. Soc., 41 [5] 388-94 (2004) https://doi.org/10.4191/KCERS.2004.41.5.388
  16. I. H. Song, J. Y. Yun, and H. D. Kim, 'Fabrication of Porous $MoSi_2$ Material for Heating Element through Self-Propagating High Temperature Synthesis Process,' J. Kor. Ceram. Soc., 41 [1] 62-8 (2004) https://doi.org/10.4191/KCERS.2004.41.1.062
  17. K. R. Han, D. I. Kang, and C. S. Kim, 'Preparation of $B_4C-Al_2O_3$ Composite Powder by Self-Propagation High-Temperature Synthesis (SHS) Process Under High Pressure,' J. Kor. Ceram. Soc., 40 [1] 18-23 (2003) https://doi.org/10.4191/KCERS.2003.40.1.018
  18. K. S. Yun, J. H. Lee, H. Nersisyan, C. W. Won, and H. S. Jung, 'Preparation of $\alpha$-$Si_3N_4$ Powder in Reaction System Containing Molten Salt by SHS-Part 1. Synthesis of Powder,' J. Kor. Ceram. Soc., 41 [3] 235-42 (2004) https://doi.org/10.4191/KCERS.2004.41.3.235
  19. J. M. Joo, S. K. Ko, J. H. Lee, and C. W. Won, 'Preparationof $Al_2O_3-B_4C$ Composite Powder by Self-Propagating High-Temperature Synthesis Process,' J. Kor. Inst. Met. & Mat., 33 [9] 1154-59 (1995)
  20. S. M. Joo, J. C. Chung, C. W. Won, and H. S. Kim, 'Preparation of $B_4C$ Powder from $B_2O_3$ Oxide by SHS Process,' J. Kor. Inst. Met. & Mat., 32 [10] 1243-49 (1994)
  21. A. A. Shiryaev, 'Macrokinetic Aspects of SHS as Studied by Thermochemical Analysis,' Thermochemistry of SHS from 'Thermo' program
  22. J. H. Lee, S. Y. Lee, Y. H. Yoon, and C. W. Won, 'Synthesis of WC Powder form the Mixture of $WO_3$ and Carbon by SHS Process,' J. Kor. lnst. Met. & Mat., 40 [11] 1150-55 (2002)

Cited by

  1. Effect of Additives on the Characteristics of Amorphous Nano Boron Powder Fabricated by Self-Propagating High Temperature Synthesis vol.25, pp.12, 2015, https://doi.org/10.3740/MRSK.2015.25.12.659