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ABSTRACT-We propose a fuzzy neural network (FNN) theory capable of deciding the quality of a road image prior to
extracting lane-related information. The accuracy of lane-related information obtained by image processing depends on
the quality of the raw images, which can be classified as good or bad according to how visible the lane marks on the
images are. Enhancing the accuracy of the information by an image-processing algorithm is limited due to noise
corruption which makes image processing difficult. The FNN, on the other hand, decides whether road images are good
or bad with respect to the degree of noise corruption. A cumulative distribution function (CDF), a function of edge
histogram, is utilized to extract input parameters from the FNN according to the fact that the shape of the CDF is deeply
correlated to the road image quality. A suitability analysis shows that this deep correlation exists between the parameters
and the image quality. The input pattern vector of the FNN consists of nine parameters in which eight parameters are from
the CDF and one is from the intensity distribution of raw images. Experimental results showed that the proposed FNN
system was quite successful. We carried out simulations with real images taken in various lighting and weather conditions,
and obtained successful decision-making about 99% of the time.

KEY WORDS : Fuzzy-neural network, Cumulative distribution function, Suitability analysis, Image quality, Image

processing

1. INTRODUCTION

There have been many attempts to develop lane departure
warning or prevention systems to prevent lane departure
due to driver inattention. Such lane departure warning or
prevention systems rely on the lane-related information
extracted by image processing, which has been
increasingly used in automotive engineering (Ozawa,
1999; Bertozzi et al., 2000; Aoli, 1998; Lee et al., 2000).

In this paper, the target roads are paved with asphalt or
cement, and have painted lane marks that are brighter
than the background of the lane marks. Extracting lane-
related information such as the location and orientation of
lane marks becomes the matter of concern. However, it is
difficult to extract reliable information because a great
deal of random noise factors, which are unpredictable,
are included in road images. The lane-related information
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extracted by image processing is also sensitive to weather
or lighting conditions. Sometimes it is impossible for
human to visually distinguish lane marks due to noise
corruption. Contrary to our expectations, the information
extracted from noise corrupted images is too inaccurate
and therefore using it for practical applications is too
risky for safe driving.

If the quality of a road image is known prior to the
extraction of lane-related information, it is possible to
avoid the extraction of unreliable information by
discarding bad quality images. Here, the image quality is
concerned with the visibility of lane marks. If the lane
marks on a road image are clearly visible, we can
conclude that the image is good. With respect to bad
images, the lane marks are nearly invisible. However, it is
not easy to find quantitative measures to determine good
and bad images. We have inevitably relied on the human
eyesight based on experience when determining been
requested to.
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In this research, this determination is essential for
making a practical system for the lane departure warning
and prevention, and it is also very important to maintain
safe driving. However, it is not easy to consider every
unpredictable situation which may happen in the real
environment such as lighting, shadowing and occlusion
of lane marks. Even though a lot of research has been
conducted to overcome noise problems, research
concerning the judgment of image quality has been
insufficient. We can classify the research related to
solving such noise-related problems into two branches:
one is the development a robust image processing
algorithm under the premise that a lot of noise exists, the
other is related to scene analysis like an image quality
decision. Most research has focused on the former, while
the latter has received little attention (Takahashi et al.,
1999; Kreucher and Lakshmanan, 1999).

Takahashi et al. (Takahashi er al., 1999) used a para-
meter space constructed by edge points to detect robust
lane information by using RVP-I (Real-time Voting
Processor-I) from images captured in rainy and shadowy
environments on highways. Kreucher and Lakshmanan
(Kreucher and Lakshmanan, 1999) detected the charac-
teristics of lane marks in the frequency domain and had
success in detecting reliable lane information under the
conditions of varying lighting and lane occlusions. How-
ever, there are still problems with respect to noise such as
pseudo-lane marks or apparent boundaries, reflection of
sunlight and ambiguous boundaries, which make system
performance undesirable.

In this paper, we focus on deciding whether or not raw
images are good enough for the reliable extraction of
lane-related information prior to the extraction. Such
decisions are essentially required to make a lane depar-
ture warning or prevention system practical. The extrac-
tion of lane-related information and its applications are
beyond the scope of this paper.

We use a cumulative distributed function (CDF),
which accumulates the edge magnitude along the edge
orientation of the input image to determine the quality of
a road image (Lee et al., 2001). When we carefully look
at the shape of the CDF we can decide whether the input
image is good enough or not to extract lane-related
information. To realize this by computer, inferring the
possibility of reliable extraction of lane-related information
is required by the feature values of the CDF. There are
several methods of inference: the brute-force method, the
statistical method like the Bayesian theory (Duda and
Hart, 1973), and the fuzzy or neural network approach.
The brute-force method has too many case numbers to
express rules and the Bayesian method needs a priori
probability. A priori probability can be obtained from a
sample set of characteristics. However, it is not only
difficult to get precise priori probability but it also

requires a lot of knowledge about the sample set (Duda
and Hart, 1973). Therefore, there seems to be a limit to
using a decision-making algorithm for the quality of road
images. To solve this kind of problem, it is necessary to
add an intelligence which can cope with various and
dynamic road environments.

Fuzzy and neural networks can be proper theories for
this decision. Fuzzy theories can express organized
knowledge and manage ambiguous information easily.
However they do not have learning mechanisms and it
takes a long time to tune the system until its performance
is satisfactory (Lin and Lee, 1996). Neural networks have
the abilities of learning, parallel processing, fault-tolerance
and tuning an arbitrary input-output relationship, but the
information is stored in weights in a distributed network.
Therefore, it is difficult to express the knowledge in a
linguistic sense (Horikawa et al., 1992). As we have seen,
fuzzy and neural networks are mutually complementary.
Recently, there has been a lot of research on fuzzy neural
networks which has fused the two systems by taking only
merits from each. Moreover, research has shown that the
fused systems can satisfactorily solve many problems
(Lin and Lee, 1996; Horikawa et al., 1992). The diagnosis
for faults based on FNN has been especially popular
because FNN can provide very effective mapping methods
with various learning algorithms when the given data is
strongly nonlinear. Another reason for the wide accep-
tance popularity of FNN is that it can carry out efficient
interpolations even when the type of given data has never
been treated before by the system (Maki and Laparo,
1997).

In this paper, we decide whether the quality of a road
image is good or not based on the result of FNN which is
a combined form of a fuzzy and neural system, easily
making human linguistic quantity descriptions measurable
and making a neural network capable of learning and
generalizing the human activity. Input to the implement-
ed FNN here is composed of 8 parameters taken from the
CDF and one parameter from intensity values. It is shown
that the feature parameters are closely related to the
prediction of lane-related information through the analysis
of the correlation between parameters and input images.
The experiment was carried out in a case by case fashion
with the 5, 7 and 9 inputs to realize real time processing
and efficient decision-making. The experiment also
tested the usefulness of the decision for the quality of
road image.

2. QUALITY DETERMINATION SYSTEM OF
THE ROAD IMAGES

In order to determine road image quality we need to
figure out if we can possibly detect information such as
the position of lane marks or the direction of a lane in
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Figure 1. Structure of the system.

advance of image processing from the input images
captured by a CCD camera mounted on a vehicle. Figure
1 shows the structure of the system.

As shown in Figure 1, an input road image has a great
amount of pixel information. We cannot use all the pixels
for the input stage of a fuzzy neural network inferring
system because this can cause excessively complicated
inferring system structure, increase the time required for
calculation, and decrease performance due to the poor
expression of features. Therefore, pre-processing is
needed to simplify the system by extracting the feature
parameters for the decision-making.

In order to preprocess, we need to construct a CDF
based on the following two facts: 1) lane marks are
painted in a brighter color than background colors: 2) the
lane direction changes very smoothly and lanes are
locally straight and parallel (Lee er al., 2001). The CDF
in particular implies the information related to lane
direction. Therefore, we can obtain useful information for
the decision of road image quality from the CDE
Eventually, the extracted features from the CDF are used
as the input for a fuzzy neural network inferring system.
Here, FNN takes the roll of a mapping-function in order
to decide if a raw image is good or bad. FNN is trained to
make this decision by learning. An output of FNN
ranging from ‘1’ to ‘0’ determines whether the reliable
extraction of lane information from an input image is
possible or not. An FNN output of ‘0’ means the input
image is bad, whereas an FNN output of ‘1’ means the
input image is good.

3. STRUCTURE AND LEARNING OF FNN

3.1. Structure of FNN

A fuzzy neural network is a fuzzy system that is trained
by a learning algorithm derived from the neural network
theory. The configuration of the proposed FNN is shown
in Figure 2 (Horikawa et al., 1992). The FNN realizes a
simplified fuzzy inference in which the consequences are
described with singletons. The back propagation (BP)
algorithm can be applied for adjusting the weights in the
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Figure 2. Structure of FNN.

Consequents

neural networks. The input of FNN to determine the
image quality consists of ten feature parameters derived
from the CDF. There are three fuzzy variables: — “good”,
“shady”, and “bad” — and there is one output.

In Figure 2, the unit is a bias unit with constant
value ‘1’, and the unit with the symbol ‘" uses a sigmoid
function that has the ability to approximate a certain
nonlinear function because the sigmoid function asym-
metrically adjusts the shape of membership functions
(Lin and Lee, 1996; Horikawa et al., 1992). Hence, using
connection weights w, and w,, the output of a unit in (C)-
layer O] is given by

. 1
T T+ exp{-w(x+w)}’

(D

where w. and w, determine the central positions and
gradients of the sigmoid membership functions from the
units in (C)-layer, respectively.

A simplified fuzzy rule is expressed as the following
fuzzy implication:
R IF x, is Ay AND ... AND »x, is A,

THEN vy, is w,, (i=1, 2, ..., n)

n

zuiwbi .

i=1 ~
y* = [ n = UiW i, (2)

where R’ is the i-th fuzzy rule, x,, ..., x, are inputs, A, ...,
A,, are fuzzy variables, y, is the output of the i-th fuzzy
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rule, w;, is a constant, and # is the number of fuzzy rules.
In addition, w; is the truth value of R and #, is the
normalized truth value so that the sum of &, is unity. y" is
the inferred value. The consequence part consists of
layers (E) through (F). The inferred value is given as the
output of the unit in layer (F), which is the sum of the
products of #; and w;,.

3.2. Learning of FNN
The FNN tunes the membership functions on the
premises and identifies the fuzzy rules by adjusting the
connection weights through the BP algorithm as shown
in Figure 3. The connection weights are initialized so that
the membership functions on the premises are appropri-
ately allocated to the universe of discourse. The FNN has
no rules at the beginning of the learning.

When learning data is given to the FNN, we first
define a cost function, which measures the system’s
performance error by : '

1 \
E, = 50u-9), 3)

where y, is the target value of the p-th learning data, y, is
the inferred value of the FNN about y,.

Then according to the gradient-descent method, the
weights are updated by:

_E
= _77;_);2

JE, " I’ (4)
oy oI Iy

= n(yp_y;) -1 i’zi,

Z&VVbi

= -7

where 77is a learning rate. And I” is the sum of the unit in
layer (F) as follows:

*
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Similarly, the updated rate Aw,, Aw, of the connection

weights w,, w, can be obtained by the same method. The
updated rate Aw,,, is presented as follows:
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where j is 3'(I-D)+3%(m—1)+3*(n—1)+3*(0-1)+3*(p-1)+
3%(g-1)+3'(r-1)+3%s—1)+1 and I¢ is the summation of k-
th unit in layer (E).

The updated rate Aw,,; is presented as follows:
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4. EXTRACTION OF FEATURE
PARAMETERS

4.1. Constructing the CDF

Extracting the feature parameters of the input to FNN is
performed on a CDF, which has been constructed by
using edge-related information (Gonzalez and Woods,
1992) as follows:

F(O) = Y Vf(x,y), ®)

n(8)

where @ is the orientation of an edge, Vf(x, y) is the
magnitude of an edge and n(6) is the number of pixels
with the orientation of & which is expressed in terms of
1°. Detailed information with respect to the CDF is given
by (Lee et al., 2001).

The CDF is the cumulative histogram of the edge
magnitude of pixels with same edge orientation. In a road
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Figure 5. Typical road images and their CDF.

image, the pixels from lane boundaries have a larger edge
magnitude than other pixels, and almost the same
orientation. Therefore, the CDF has a rather large value
in the direction corresponding to the lane boundary. As
shown in Figure 4(a), suppose that the direction of the
right lane boundary corresponds to 8 and the left lane
boundary corresponds to 6. If the CDF is defined in a
range of from 0° to 180° then, we have the CDF as shown
in Figure 4(b). We can easily see the relationship between
the CDF and lane boundary from this figure.

Figure 5 shows typical images and their CDFs for
determination of road image quality. It shows CDF with a
large value around the direction of lane boundaries
because lane boundaries have continuity in orientation
without sudden change. The CDF contains much infor-
mation that can be used for making quality decisions. We
can decide if the image can be used for extracting lane-
related information or not by analyzing CDF since it
describes the orientation of the lane boundary of the input
image quite well.

m—
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H—
Zone0 Zonel Zone2 Zone3 Zoned
(@)
Zone0 0~14°
Zonel 15~75°
Zone2 76~104°
Zone3 105~165°
Zoned 166~180°
(b)

Figure 6. Division of the CDF.

4.2. Extracting Feature Parameters
We define the feature parameters used as the input to
fuzzy neural network system heuristically in a prob-
ability-distributed form by considering the CDF shape.
There are ten parameters: nine of them are taken from the
CDF, and one is from the intensity distribution of the
input images. The CDF was divided into five zones as
shown in Figure 6 and nine parameters P,~P, were
obtained by analyzing the shape of the CDF in each zone.
The CDF has symmetry along an axis. Since the lane is
parallel, the shape of the CDF maintains the property of
the symmetry for 90° when the vehicle is traveling in the
center of the lane. Therefore, we use zoneQ to zone2 for
extracting the parameters of the right-side lane boundary
and zone? to zone4 for extracting the parameters of the
left-side lane mark. The following parameters P,~P, with
respect to right-side lane boundary were extracted in the
zones of zone0 to zone2. If the value of each of the
parameters P ~P,, is close to 0, this means that extracting
the lane-related information is possible. However, if the
value of each of the parameters P,~P, is close to 1, this
means that extracting the lane-related information is
difficult.

We get the feature parameter P, by the relative
relationship between zoneQ and zonel which is defined
as Equation (9).

P =1

1)+ o) - (o + o)
_2{(,‘11"'0'1)'*‘(/10"' GO)H}’ ®

where u is the mean of the CDF, o is the standard
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deviation, and the subscripts, ‘0’ and ‘1°, stand for the
zone number of the CDE

Zone0, which is not expected to have edge information
related to lane marks, and zonel, which is expected to
have edge information related to lane marks, are
compared to each other. If zone( has a larger value than
zonel, this means that the input image may have poor
quality. For example, the track of a worn-out road
surface, the cross road of a railway, an access road to
highway tollgates, and roads with ambiguous lane marks,
are all cases where strong edge information can be
detected at the zone(. In such cases, we expect there
would be no edge information.

As shown in Figure 7, however, in the case of multiple
lane detections, the CDF is shaped with multiple peaks
(Local Maximum Point, LMP). In Figure 7, P, appro-
aches ‘1’, which is a sign of poor quality of the raw
image. To compensate for this problem we define
additional parameters, P, as in Equation (10) and P; as in
Equation (11). Unlike P,, P, and P, give desired values
even with multiple lane detections only if the subject lane
has enough strong edge information.

Py= _%{%+ 1}, (10)
1
where
2 F(o)
u":g:l_T%{_ll—’ Ro = {O|F(6)>u,0< 8< 14},
0
2 F(o
“‘zee—ﬁ%{T’ R, ={GF(O>u,15<0<75}.
1
_, 1)8i-Si
Pi=1 2{5:‘, +Si, T 1}’ a
where
> F(6)
SiF%—,mé ={OF(6) > + 0, 0 < §< 14}
O . 1
Y F(6)
e R’ ,
Si‘zg_ll—lW’% ={6|F(60) > u, + 71,15 < §< 75},
!

in which Il Il represents the number of elements of a set.
Feature parameter P, is obtained from relative relationship
among zonel, zone2 and zone3. It is defined as follows:
Ut Us—u

(12)

=
U+ s+ u,

RS &

0 45 a0 135 180

(b) CDF

Figure 7. Road image with multiple lane detection and its
CDF.

(a) Input image

where

’ ”

u +u
Ur,= 5

> F(6)

”EE%W_’W = {0|F(6)>u,,76<0<90}

2. F(6)

“leTin = {6|F(8) > 13,91 < <104} .

P, is defined in order to determine whether the value of
the CDF of zone?2 is bigger than that of zonel or zone3,
which happens when the lane mark is occluded by a
vehicle in front as shown in Figure 8(a), or when there is
a mark similar to the lane marks at the part around the
center of lane. A similar situation could also happen
when the centerline of a car body is almost aligned with
the lane boundary as shown in Figure 8(b). In the latter
case, the CDF shape is very similar to the former case
where the lane is occluded by a vehicle in front.

(b) Road image with lane change and its CDF

Figure 8. Road images with occlusion and lane change
and their CDF.
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Therefore, it is rather difficult to distinguish each of these
with the parameter P,. Consequently, we eliminate this
latter situation from construction of the learning data of
FNN because this latter situation not only rarely occurs,
but is also easily noticed in advance as lane-changing.

Feature parameters P; ~Py are parameters represent-
ing noise figures of a raw image by analyzing the shape
of the CDF at zonel or zone3. Figure 9(a) shows an
image with somewhat high noise and Figure 9(b) is the
CDF of the image. Figure 9(c) is a zoomed-out picture of
part (& of Figure 9(b). Figure 9(c) shows that the curve of
the functlon is not very even because of noise. Ps
represents evenness of the function and is defined as
follows:

_ Frequpdown

T max{R}-min{R}+ 1’
where

= {G|F(6)>u + 0,152 0<75}
max{R} = max {R}
min{R} = mfi}n {RY.

13)

In Equation (13), Freq, u, is the number of fluctuations
of the function between min{ R} and max{R}.Itis the
same as the number of arrows in Figure 9(c). Therefore,
Ps cannot be zero, but it is regarded as good if it is near
ZEero.

Feature parameter P, is defined in Equation (14) on
the supposition that there will be many points crossing
the line of g+ between min{ R} and max{R} when
the input image has poor quality.

1]

Pe=1 " max{R}-min{R}+ 1’

(14)

where |R| is the number of elements of the set , the part
of the oblique line in Figure 9(d).

If there are many points crossing the line of u+o
between min{ R} and max{ R}, this means that there is
a large possibility of the existence of other noisy objects
in the image besides the lane marks. P, is the parameter
for expressing this situation.

Feature parameter P; is defined in Equation (15) on the
supposition that the poor input image makes a wide gap
between min{R} and max{R}.

mix{R} -—min{R} +1

w

Py= (15)
where w is the range of zonel which is 61 obtained from
75-15+1.

As shown in Figure 9(d), the wider the gap between
min{ R} and max{R}, the poorer the road image; and
the narrower the gap, the sharper the CDF, which makes
it easy to distinguish the lane marks.

Feature parameter P; is defined in Equation (16) on the
supposition that if min{R} is below 15°, then a large
value of the CDF exists in zoneQ in which there is no
edge information with respect to a lane mark. In such a
situation, discrimination of lane marks is difficult.

P8={(1)’ if min{R}-15<1 . 16)

, otherwise

In Figure 10(a) which presents a tollgate entry image,
we can see that there is a lot of noise. Figure 10(b) shows
that min{R} exists in zoneO.

Feature parameter P, is defined in Equation (17), on
the supposition that if the input image is poor, there is a
small difference between the average u and the
maximum value of CDF (denoted by D in Figure 9(d)).

(a) Input image

(b) CDF
Figure 10. Tollgate entry image and its CDF.
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P=4, a7
where D is taken by the average of the largest five values
of the CDF in zonel.

On the supposition that it is relatively difficult to
discriminate between lane marks and road surface when
the intensity is saturated, the feature parameter P, is
derived from the intensity distribution of input road
images and is defined as

1 n
;Zf(x,y)
i=1
P10=—255—, (18)
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Figure 11. Probability distribution of feature parameters.

where f(x, y) presents the intensity of the input image,
and n is the number of pixels within the region of interest
which is explained in detail by (Lee, 2002).

4.3. Correlation Evaluation of Feature Parameters

To evaluate the effectiveness of the feature parameters as
the input to FNN, we applied 400 road images with the
following various conditions: corrupted road-surfaces
(for example, worn paint marks), marks covered by dust
or mud, heavy shadows, letters and arrow marks on the
road surface, various weather conditions, illumination
change (for example, darkness), and various types of
road, like narrow, wide, curved, straight, inclined, declin-
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ed, tunnel, etc. The determination of image quality from
input images depended on human visual judgment. The
sample images were viewed by 3 or 4 people who judged
the image quality based on the lane marks in the images.
The image quality results and the correlation relationship
of feature parameters P,~P), are presented in Figure 11.

Through the distributions of feature parameters P,~P),
as shown in Figure 11, we confirmed that these distribu-
tions could be used to make the distinction between good
and bad road images. Therefore, reliable information can
be supplied to us by determination of image quality using
the feature parameters P,~P,, derived from the CDF and
the intensity distribution.

5. EXPERIMENTAL RESULTS

5.1. Learning Result of FNN

If the number of input to FNN is increased, the
connection weights are also geometrically increased,
which eventually leads to an increasing difficulty in
learning and calculation time. Therefore, we implement-
ed the FNN with three types of input, considering real-

time processing, judging capability, and the cost of

implementing hardware for an application system of
lane-related information in the future. Each of the three
types is shown in Table 1.

As shown in Table 1, structure 1 of the FNN has five
inputs which are the feature parameters Ps~P, derived
from the shape of the CDF in zonel or zone3, in which
the possibility of the existence of edge information
related to lane marks is high. Structure 2 has seven inputs
which are the same parameters as structure 1 plus the
feature parameter P, which discriminates occluded lanes
and P,, derived from the intensity distribution of the input
images. Structure 3 has nine inputs composed of nine
parameters of the ten parameters, P,~P),, in which Py is
excluded because P,~P; play the role of P;.

The input images from which the FNN learns consists
of 200 frames of selected images of various road images,
composed of good images (32.7%), shady images
(43.7%), and bad images (23.6%). This classification was
carried out by human visual judgment. The learning error
was evaluated by Equation (19). The error is the
accumulative summation of the difference between
inferred values and target values. For each structure

Table 1. Input number and structure of FNN.

Structure of Input number Feature parameters
FNN of FNN

Case 1 5 Ps~P,

Case 2 7 P,~P,

Case 3 9 P~P,, P, Py,
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Figure 12. Learning results of FNN.

shown in Table 1, the resulting errors were 0.0824225,
0.0821424, and 0.0866539, respectively.

E=}E, (19)

where p is the number of input patterns used for learning.

Figure 12 represents the learning result of FNN in the
case of structure 3 of the nine inputs. The membership
function of fuzzy variables by initial connection weights
is represented by the dotted line, and the membership
function after learning is represented by the solid line.
The connection weights of consequent of Figure 2 are
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Table 2. Experimental results of the determination of image quality.

Experimental image “Good” : 4,287 frame

Normal decision of FNN

Fault decision of FNN

Input number

of FNN Good Shade Bad
Frame number Decision rate Frame number Decision rate Frame number Decision rate
5 3,875 90.4% 176 4.1% 236 5.5%
7 3,905 91.1% 210 4.9% 172 4.0%
9 4,248 99.1% 39 0.9% 0 0.0%

Experimental image “Shade” : 2,768 frame

Normal decision of FNN

Fault decision of FNN

Input number

of ENN Shade Good Bad
Frame number Decision rate Frame number Decision rate Frame number Decision rate
5 2,358 852% 183 6.6% 227 8.2%
7 2,596 93.8% 103 3.7% 69 2.5%
9 2,751 99.4% 17 0.6% 0 0.0%

Experimental image “Bad” : 1,676 frame

Normal decision of FNN

Fault decision of FNN

Input number

of FNN Bad Good Shade
Frame number Decision rate Frame number Decision rate Frame number Decision rate
5 1,502 89.6% 72 4.3% 102 6.1%
7 1,582 94.4% 37 22% 57 34%
9 1,676 100.0% 0 0.0% 0 0.0%

initially set to zero and then, learning is carried out.

5.2. Image Quality Determination Results

A number of experiments have been conducted to
determine road image quality. In this experiment, we did
not use the images used in the learning of FNN. The total
number of images used in this experiment was 8,732
which were classified as follows: good images 49.1%,
shady images 31.7%, and bad images 19.2%. For each
type of structure shown in Table 1, the results of the tests
are shown in Table 2.

Through these experiments, we obtained the good
results of 88.4% in structure 1 with five input parameters,
93.1% in structure 2 with seven input parameters, and
99.5% in structure 3 with nine input parameters. There-
fore, we concluded that the judging ability of the FNN
increased according to the expansion of the number of
input parameters. These results also prove that the feature
parameters defined by the CDF and intensity distribution
are strongly related to image quality. However, the
complexity of structure increases as the number of input
factors to FNN are increases. Therefore, structure 3 with
nine parameters requires a lot of time to be learned.

In the cases of 5 and 7 input parameters, we were given

erroneous decisions. For example, images that were
judged as bad by human visual function were determined
to be shady or good images by the FNN, and images that
were judged as shady and good were determined to be
bad images by the FNN. This was due to the insuffici-
ency in characterizing the various shapes of the CDF
which were derived from real road images by 5 and 7
input parameters that were selected to reduce learning
and calculation time. However, in the case of 9 input
parameters, we obtained 100% discrimination ability for
bad images. This means that these parameters give
enough information for determining image quality. As a
mapping function for the determination of image quality,
the FNN was effective and displayed intelligent perfor-
mance ability.

6. CONCLUSION

In this paper, we presented a FNN to determine image
quality using the feature parameters taken by the CDF. A
FNN is a fuzzy system that is trained by a learning
algorithm derived from the neural network theory. The
learning ability of a neural network can cope with various
and dynamic road environments.
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Considering real time processing and effective esti-
mation, we designed models of three types and tested
these models in this experiment. The results are shown in
this paper. These models have the same number of fuzzy
variables and output parameters, but are different in the
number of input parameters. For each model, numbers of
input parameters were 5, 7, and 9, respectively. In
addition, there were three fuzzy variables and one output
parameter.

The total number of the feature parameters used for the
input of the FNN was 10. Nine among them could be
obtained from the CDF and the remaining one from the
intensity distribution of input images. We could confirm
that the derived feature parameters were strongly related
to image quality by the experiment, and that the feature
parameters were factors that recognized whether road
images were good or not, through correlation analysis.

From the experiment with various road images, we
obtained a determination ability of over 99%. This means
that the FNN presented in this paper was effective and
displayed intelligent performance ability. Furthermore,
we concluded that the judging ability of the FNN also
increased according to the expansion of the input
numbers.

In the future, research on the practical application of
the results derived from this study must conduct and be
applied to the creation of a lane departure warning and
prevention system. The system proposed in this paper
could not only be applied to image processing of road
environments but also to various pattern classifications or
recognition systems.
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