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ABSTRACT : Early predictions of crop yields can provide
information to producers to take advantages of oppor-
tunities into market places, to assess national food security,
and to provide early food shortage warning. The objectives
of this study were to identify the most useful parameters
for estimating yields and te compare two model selection
methods for finding the ‘best’ model developed by multiple
linear regression. This research was conducted in two 65-
ha corn/soybean rotation fields located in east central
South Dakota. Data used to develop models were small
temporal variability information (STVI: elevation, apparent
electrical conductivity (EC,), slope), large temporal varia-
bility information (LTVI: inorganic N, Olsen P, soil mois-
ture), and remote sensing information (green, red, and NIR
bands and normalized difference vegetation index (NDVI),
green normalized difference vegetation index (GDVI)).
Second order Akaike’s Information Criterion (AICc) and
Stepwise multiple regression were used to develop the best-
fitting equations in each system (information groups). The
models with A, < 2 were selected and 22 and 37 models were
selected at Moody and Brookings, respectively. Based on the
results, the most useful variables to estimate corn yield were
different in each field. Elevation and EC, were consistently
the most useful variables in both fields and most of the
systems. Model selection was different in each field. Different
number of variables were selected in different fields. These
results might be contributed to different landscapes and
management histories of the study fields. The most common
variables selected by AICc and Stepwise were different. In
validation, Stepwise was slightly better than AICc at Moody
and at Brookings AICc was slightly better than Stepwise,
Results suggest that the AICc approach can be used to
identify the most useful information and select the ‘best’ yield
models for production fields.
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S 7 ield predictions can assist in harvest planning, model-
ing, assuming food security, and providing early food

shortage warnings. Researchers have used remote sensing
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information to predict crop yields, because remote sensing
information is relatively easy to collect and shows large area
at once.

Staggenborg & Taylor (2000) reported that GDVI exp-
lained 40 % of corn yield variability observed m 13 Kansas
fields. Weigand er al. (1999) showed that NDVI was corre-
lated with corn yield in Texas fields and the predicted yield
from an equation using NIR, red, and yellow-green bands
accounted for 85 % of actual yield. Chang ef al. (2003) used
remote sensing data taken in three different times
(beginning, middle, and end of growing season) to predict
corn yields. This study showed that reflectance measured
early in the season provided information about soil water
and color, while reflectance measured in late summer
provided information about plant conditions.

To develop yield prediction models, simple or multiple
regression analysis has been used. When multiple regression
is used, collinearity may be a problem. Collinearity is the
property that at least one predictor is a ‘near’ linear
combination of other predictors (Chatterjee er al., 2000). If
collinearity occurs the coefficient values are sensitive to
shght changes in the data set and to the addition or deletion
of variables in the equation. Principal Component Analysis
(PCA) 15 one of the common methods in multivariate
analysis to avoid collinearity problem (Johnson, 1998), but
the number of information (variables) to calculate PCs 1s not
reduced (very much data driven) and standardization may
cause information to be lost.

Model selection (e.g. variable selection in regression) 1s a
balance between bias and variance (Burnhaam & Anderson,
2001, 2002). Models with too few parameters (variables)
have bias, whereas models with too many parameters (vari-
ables) may have poor precision. In the analysis of empirical
data, one must face the question ‘What model is the best one
to explain variability of data at hand?’. In linear regression
model, goodness-of-fit index or coefficient of determination
(R?) based on least square errors has been used widely to
evaluate the ‘best’ model. The problem of using R is that R?
increases with increasing the number of explanatory vari-
ables of equation in same data set always. The Akaike’s
Information Criterion (AIC) is another method to find the
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‘best” model. AIC is based on Kullback-Leibler (K-1) infor-
mation and statistical maximum likelihood and has been
used to select the best model. K-L information is a measure
(a ‘distance’ in a heuristic sense) between conceptual reality,
/, and approximating model, g, and the equation is,

_ Sx) )
Ife)=| f(x)ln(g o) dx [1]
where f and g are n-dimensional probability distributions.
K-L information, denoted I(f, g), is the ‘information’ lost
when model g is used to approximate reality, / The analyst
seeks an approximating model that loses as little information
as possible; this is equivalent to minimizing /(f g), over the set
of models of interest. Akaike’s derivation for large samples
relied on the K-L information and the equation of AIC is,

AIC = -2In(L(0|data)) + 2K 2]

where In(L(8|data)) is the value of the maximized log-
likelihood over the unknown parameters (8), given the data
and the model, and X is the number of estimable parameters
in that approximating model. AIC 1s easy to compute from
the results of least square estimation in the case of linear
models or from the results of a likelihood-based analysis.
The model which has a minimum AIC is selected as ‘best’
for the empirical data. AIC is not a test of models, so there 1s
no any level of ‘significance’. Instead, there are concepts of
evidence and a ‘best’ inference, given the data and the set of
a priori models.

AIC-based model selection is equivalent to certain cross-
validation methods. The difference between model AIC and
the minimum AIC is very useful to rescale AIC values such
that the model with the minimum information criterion has a
value of 0,

A= AIC, - minAIC 3]

the A, values easy to interpret, and allow a ‘strength of evi-
dence’ comparison and ranking of candidate models. The
large the ,, the smaller the likelihood of that model being the
best model in the set of candidate models considered. It is
important to know which model is second best as well as
some measure of its standing with respect to the best model.
There is a rule to assess the relative merits of models in the
set: models having A <2 have substantial support (evi-
dence), those where 4< A, < 7 have considerably less sup-
port, while models having A, > 10 have essentially no support.

Alternatively, Akaike weighs, w,, can be used as indicators
of the ‘weight of evidence’ for the model i,

__exp(-Ai/2)

R
Zexp(—Ar/Z)
r=1

[4]

1

It is convenient to normalize these likelihoods such that
they sum to 1. The w, can be interpreted as the probability
that model : is the best K-L model in the set of R models
being considered.

When X is large relative to sample size # (which includes
when # is small, for any K), second-order AIC (AICc)
should be used, and the equation is

2K(K+1)
(n-K-1)

This should be used unless n/K>~40. AlCc values
replace AIC in equation [3] and [4] to calculate A, and w,.

Westphal ef al. (2003) used AIC to select set of candidate
logistic regression models (important variables) to estimate
distribution of 31 bird species at four different landscape
characteristics in the Mt. Lofty Ranges, South Australia.
They reported that AIC can be important technique in the
toolkits of landscape ecologists. When developing model, it
is important to identify useful information. In this study,
three categories of data information were used for
developing yield prediction models. They are STVI, LTVI,
and RS. The STVI includes elevation, EC,, and slope which
do not change much for a long time. The LTVI mcludes
inorganic N, Olsen P, and soil moisture which are changing
and should be measured periodically. The RS includes aerial
images taken in end of growing season. The advantage of
RS information 1s that large area can be shown in one image.
Two different model selection methods (AIC and Stepwise)
were compared to find the best model equation to estimate
corn yields. The objectives of this study were to identify the
most useful parameters for estimating yields and to compare
two model selection methods for finding the ‘best’ model
developed by multiple linear regression.

AICc =—2In(L(0)) + 2K + [5]

MATERIALS AND METHODS
Ground Scouting Data

This research was conducted in two 65-ha corn/soybean
rotation fields located in east central South Dakota. The lati-
tude and longitude values for Moody were 44.17 °N and
96.62 °W, respectively, and for Brookings were 44.23 °N
and 96.65 °W, respectively. Elevation ranged from 518 to
534 m and slope ranged from 0 to 7.2% m Moody. In
Brookings, elevation ranged from 505 to 518 m and slope
ranged from 0 to 10.6%. Soil information for these fields
was previously reported in Clay et al. (2001).

In each field, soil and corn yield information were col-
lected from 50 different points in 1999 and 2000 for Moody
and Brookings, respectively. At 50 sampling points in each
field soil samples were collected. Each soil sample consisted
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of 15 individual cores. Each sampling point was located
with a carrier phase frequency Global Positioning System
(DGPS). The differential correction was obtained from
Omnistar (Omnistar, Inc., Houston, TX). Elevation was
measured with DGPS.

Soil samples were air-dried (35 °C) and ground (2-mm) to
prepare them for analysis. Inorganic N was extracted from
soil with 1.0 M KClI using a 10:1 solution to soil ratio and
analyzed on an Astoria Analyzer 300 (Astoria-Pacific Inc.,
Clackamas, OR). Olsen P was extracted from 2 g of soil
with 40 ml of 0.5 M NaHCO; at a pH value of 8.5. The soil
extract was filtered, a color reagent containing ascorbic acid
and molybdate was added, and color development was mea-
sured on a colorimeter set at 882 nm (Olsen & Sommers,
1982). EC, was measured with a Veris 3100 (Veris Technol-
ogy, Salnas, KS). Gravimetric soil moisture to a depth of
60-cm was measured at least every month. Slope (%) was
calculated based on elevation using ArcView (ESRI, Inc.
Redland, CA). Grain was harvested by a combine equipped
with a calibrated Ag Leader 2000 (AgLeader Technology,
Inc., Ames, 1A) yield monitor in 1999 and 2001 for Moody,
and in 2000 and 2002 for Brookings (Lems, 2001). The soil
and grain data were transformed to natural log.

Aerial Images

The remote sensing images in 1999 and 2000 were col-
lected with a digital camera mounted on a plane flying at
1500 m above MSL (mean sea level) between 10 AM and 2
PM at local time on cloud free days. Spatial resolution of the
images was approximately 1-m. The wavelengths collected
were: green (557-582 nm), red (647-672 nm), and NIR
(720-920 nm). Images were collected on 21 September and
on 29 August, in 1999 and 2000, respectively.

At least four control points in each field were used by
IMAGINE (ERDAS, Inc. Atlanta, GA) for geo-registration.
All data that were prepared for point coverage (point layers)
were overlaid on the aerial images. ArcView and ArcView
Spatial Analyst (ESRI) were used for mapping and spatial
analysis. The aerial images were transformed into grid files,
which were used to calculate NDVI and GDVI. The equa-

tions for NDVI and GDVI are:
NDVI = (NIR-Red) / (NIR + Red) [6]
GDVI = (NIR-Green)/(NIR+Green) [7]

where NIR is pixel value (digital number) of between 700
and 900 nm, red is pixel value between 600 and 700 nm, and
green is pixel value between 500 and 600 nm.

The pixel values collected from sampling points were
divided by reference pixel values of each band. Based on the

assumption that the adjacent gravel road was an invariant
target, it was used as a pixel reference value. Afier
normalization, the remote sensing data were transformed to
natural log.

Model Development and Selection

Yield prediction models were based on six different
systems which were STVI, LTVI, STVI+LTVI], STVI+RS,
LTVIHRS, and STVI+LTVI+RS as explanatory variables.
The independent variables were corn yields in 1999 and
2000 at Moody and Brookings, respectively.

AlCc method was used instead of AIC to find the best
models in each system, because number of samples over
number of variables is less than 40. PROC REG in SAS
(SAS Institute, 1995) was used to calculate AIC values for
each model. Equation {5] was used to calculate AICc. A, and
w, of AICc were calculated with equation [3] and [4] instead
of AIC to see how models were supportable. For choosing
the best-fitting equations from all possible multiple regres-
sions, models with A, < 2 were selected.

Stepwise method in SAS was used to develop the best-fit-
ting equations in each system. The stepwise method is a
modification of the forward-selection. After a variable is
added, the stepwise method looks at all the variables already
included in the model and deletes any variable that does not
produce an F statistic significant at the specific entry level.
The stepwise process ends when none of the variables out-
side the model has an F statistic significant at the specific
entry level and every variable in the model is significant at
the specific entry level. The significant level for entry (SLE)
was 0.2 and the significant level for stay (SLS) was 0.05 to
avoid the collinearity problem. The yield models generated
from data collected in 1999 and 2000 were used to predict
corn yields in 2001 and 2002 at Moody and Brookings,
respectively. Variance inflation factor (VIF) was calculated
to see collinearity between variables. If VIF is bigger than
10, there is enough collinearity present to state causing sever
problem (Chatterjee er al. 2000). These statistical analyses
were conducted using PROC REG in SAS.

RESULTS AND DISCUSSION
Identifying the Most Useful Factors

Com yield was negatively correlated with elevation, P,
and red band and positively correlated with EC,, soil mois-
ture before planting and in summer, NIR, NDVI, and GDVI
at Moody (Table 1). At Brookings, com yield was nega-
tively correlated with elevation, green, and red band and
positively correlated with EC,, N, soil moisture before plant-
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ing and in summer, NIR, NDVI, and GDVI.

Based on the criterion (A < 2), 22 and 37 models were
selected in Moody and Brookings, respectively. The best
models in each system were selected from all possible mod-
els. At Moody, the number of selected models were 2 out of 7
models in STVI system, 3 out of 15 models in LT VI system, 2
out of 127 models in STVI+LTVI system, 4 out of 255 mod-
els in STVI+RS system, 7 out of 511 models in LTVI+RS
system, and 4 out of 4095 models in STVI+LTVI+RS system
by AICc (Table 2). The range of R? values generally increased
with increasing number of variables. The most common vari-
ables, which were selected in more than 50% of selected mod-
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els, in STVI system were elevation. In LTVI models, the most
common variables were P and soil moisture before planting.
In STVI+LTVI models, the most common variables were ele-
vation, EC,, P, and soil moisture before planting. In STVI+RS
models, the most common variables were elevation, slope,
EC,, and NDVI. In LTVI+RS models, the most common vari-
ables were P, soil moisture in summer, green and red bands,
and NDVI. In STVI+LTVI+RS models, the most common
variables were elevation slope, EC,, P, soil moisture before
planting, and NDVL

Elevation, EC,, P, soil moisture before planting, and
NDVI were the most common variables in systems. Eleva-

Table 1. Correlation coefficient matrix between variables in three systems (STVI. small temporal variability information, LTVI: large
temporal vanability iformation, and RS: Remote Sensing) and com yield n 1999 and 2000 at Moody and Brookings,

respectively.
STVI LTVI RS
N (a)Soil  (b) Soul
%ﬁ; S(ljjse (mES(r:ral'l) moisture mOIStUre  Green Red ~ NIR ~ NDVI  GDVI
(- mgkg' =) (o Vo =rmnmene )
r
Moody
Slope 0.01
EC, -0.89%*  0.06
N -0.02 -0.05 -0.01
p 0.80**  0.13 -0.76%* 005
(a) Soll moisture  -0.82**  -0.07 076** -0.13  -066**
(b) Soil moisture  -0.82*%* -0.12 0.73*%*  -0.06  -0.71** 0.97**
Green -0.42**  -0.21 0.12 -0.07 -0.46**  0.10 0.18
Red 0.43*% -0.07 -0.51%*  0.06 0.25 -0.67**  -0.63**  0.50**
NIR -0.84** (.14 0.82%* -0 15 -0.64%*  0.79** 0.77**  0.09 -0.70**
NDVI -0 72** .10 0.70%*  -0.14  -049%% 0.81%* (.78 -012  -0.89%* 092**
GDVI -0.32*  032* 047 -0.10 -012 0.50%*  0.42%%  -0.60** -088** 0.69** (.81%*
Comn (Mgha)  -0.78** -0.06 0.61** -0.10  -045%* 0.84% 0.82** 0.12  -0.70** 0.84** (.89** (.58**
Brookings
Slope 0.43**
EC, 0.12 0.06
N 002 -0.05 0.26
P -0.25 008 0.12 (0.39%*
(a) Soil moisture  -0.26  -0.17 031* 043**  0.04
(b) Soil moisture  -0.51**  -0.16 047%*  037*  032%  (Q.78%*
Green 0.07 -000 -059%* 041** 020  -0.63** -0.73%*
Red 037  0.09 -054** 028 -0.25 -0.59*%* -0.80**  (0.92%*
NIR -0.79%%  0.42%* 024 -0 01 0.11 0.25 058** -0.16 -0.45%*
NDVI -0.59**  -0.28 047%  0.17 0.17 0.51%% @ 79%k  071%* -0.90%* 0.77**
GDVI -0.50*%*  -0.24 0.57**  0.27 0.20 0.58%%  0.84%% -0 8I** -0.94** (70%* 097**
Com(Mgha!) -038* -0.19 0.69**  0.34*  0.27 0.54%%  (0.81**% -0.84** -0.90** 0.52%% (84*%* (.91**

(a) so1l moisture: soil moisture before planting, (b)soil moisture: so1l moisture 1n summer * and ** are significant at 95 and 99% level,

respectively.
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Table 2. The models selected by AICc in each system and vanables selected in more than 50% of selected models. The dependent variables were
com yield collected n1999 and 2000 at Moody and Brookings, respectively (number of all vartables, number of all posstble models).

Systems Num. of Num of  Range of R Ranges of w, The most selected vanables n system
selected models  variables values
STVi(3.7
Moody 2 1-2 0.606-0.633 0.33-0.41  elevation, EC,
Brookings 1 2 0.703 0.75 elevation, EC,
LTV1(4,15)
Moody 3 1-3 0.713-0.732  009-0.26 P, (a) so1l moisture
Brookings 3 1-3 0.653-0.683  0.12-0.28  (a) soil mossture, (b) soil mosture
STVIHLTVI (7, 127)
Moody 2 4-5 0.841-0.844  0.13-0.33  elevation, EC,, P, (a) soil moisture
Brookings 7 2-4 0.780-0.809  0.06-0.16  EC, (b) soil moisture
STVI+RS (8, 255)
Moody 4 3-6 0895-0916  0.08-0 15  elevation, slope, EC,, green, NDVI
Brookings 5 3-4 0912-0915 0.05-0.14  elevation, EC,, green
LTVI+RS (9,511}
Moody 7 4-5 0.896-0.906  003-0.08 P, (a)soil moisture, (b)soil moisture, green, red, NDV1
Brookings 11 2-4 0865-0.881 0.0i-0.04 NDVI, GDVI
STVI+LTVI+RS (12, 4095)
Moody 4 6-8 0939-0.947  0.05-0.10  elevation, slope, EC,, P, (a)soil moisture, NDVI
Brookings 10 3-6 0.912-0.926  001-0.04 elevation, EC,, green

(a) so1l morsture: so1l moisture before planting, (b)soil moisture: sotl moisture m summer.
STVI- small temporal variability information, LTVI: large temporal variability information, and RS: Remote Sensing

Table 3. The intercept and estimated parameters of the best models 1 each system selected by AICc and stepwise methods and amount of
yield vanability explained by the equations with corn yield in 1999 at Moody.

STVI LTVI RS

Systems et v, Slope EC, NP @Son - )80 Green Red NIR NDVI GDVI :
STVI

AlCc 1707 -269 -3.07 0.633

Stepwise 1212 -192 0.606
LTvi

AlCc -25.47 10.64 0.713

Stepwise -25 47 10.64 0.713
STVI+LTVI

AlCce 1360  -219 -3.42 1.54 8.59 0.841

Stepwise -25.47 10.64 0.713
STVI+RS

AlCc 121 -174 327 -479 3.50 0.905

Stepwise  12.18 558 -140 0.849
LTVI+RS

AlCe 1.54 1.30 366 3.63 582 -0.85 0.906

Stepwise  12.18 558 -140 0.849
STVI+LTVI+RS

AlCe 1202 -189 -319 -4.25 1.03 353 2.65 0.936

Stepwise  12.18 558 -1.40 0.849

(a) soil moisture: so1l moisture before planting, (b)so1l mosture: so1l mossture in summer
STVI small temporal variability information, LTVI: large temporal variability information, and RS- Remote Sensing
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tion and EC, in STVI system were selected in most these
models. These results were contributed to areas with high
elevation having low soil water than area with low elevation
and EC, being positively correlated with soil water, which
was a major factor influencing crop yield (Chang et al.
2003). Soil moisture before planting and P in LTVI system
were the most common in models and correlated positively
and negatively with corn yield, respectively. Inorganic N
was selected in 2 models out of 16 models (models of STVI,
STVI+LTVL, STVI+RS, and STVIHLTVI+RS). NDVI was
selected in most of models and correlated positively with
corn yield. NIR band and GDVI was selected in 1 and 3
models out of 15 models (models of LTVI+RS, STVI+RS,
and STVI+LTVI+RS), respectively. There were severe col-
linearity problems between soil water before planting and in
summer (VIF: 17 and 19, respectively), between red band
and NDVI (VIF: 22 and 20, respectively), and between ele-
vation and EC, (VIF: 16 and 8, respectively) (data not
shown).

At Brookings, the number of selected models were 1
model in STVI system, 3 models in LTVI system, 7 models
in STVI+LTVI system, 5 models in STVI+RS system, 11

models in LTVI+RS system, and 10 models in STVI+
LTVI+RS system by AICc (Table 2). Similar results with
Moody were observed in Brookings, but in STVI+RS sys-
tem, even though the highest number of variables (4) was
same with STVI+LTVI and LTVI+RS systems, the range of
R? values was higher than the two systems. The most com-
mon variables in each system were elevation and EC, in
STVI system, soil moisture before planting and in summer in
LTVI system, EC, and soil moisture in summer in STVI
+LTVI system, elevation, EC,, and green band in STVI+RS
system, NDVI and GDVI in LTVI+RS system, and eleva-
tion, EC,, and green band in STVI+LTVI +RS system.
Elevation, EC,, and green band were the most common in
systems. Elevation and EC, in STVI variables were the most
common in models. Soil moisture before planting and in
summer in LTVI system were the most common in models.
P was selected in 1 model out of 31 models (models of
LTVI+RS, STVI+RS, and STVI+LTVI+RS). Green band
was the most common in models. NIR band was not
selected in any model. Variables between green, red, NDV],
and GDVI (VIF: 40, 64, 100, and 81, respectively) and
between red, NIR, NDVI, and GDVI (VIF: 41, 14, 46, and

Table 4. The intercept and estimated parameters of the best models i each system selected by AICc and stepwise methods and amount of
yield variability explained by the equations with corn yield in 2000 at Brookings

STVI LTVI RS
: 2
Systems Intercept Elev. Slope EC N n(qi)‘sstﬁlrle n(qli))lsstzlrle Green Red NIR NDVI GDVI R

STVI

AlCc 165 -264 0.810 0.703

Stepwise 165 264 0.810 0.703
LTVl

AlCc -0.327 -0.445 1107 0677

Stepwise -0.983 1.139 0.653
STVI+LTVI

AlCc 699 -114 0.535 0.663 0.804

Stepwise -1.45 0432 0.873 0779
STVI+RS

AlCc 136 217 0.427 -1.08 0.912

Stepwise 2.19 0.279 105 0.872
LTVI+RS

AlCc 343 -0.73 248 0.869

Stepwise 343 -0.73 248 0.869
STVI+LTVI+RS

AlCe 136 217 0.427 -1.08 0.912

Stepwise 2.19 0.279 1.05 0.872

(a)so1l moisture so1l moisture before planting, (b)soil moisture: soil moisture in summer.
STVI- small temporal vartability information, LTVI. large temporal variability information, and RS. Remote Sensing
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Table 5. The intercept, slope, and R* of simple limear regression between the estimated corn yields using the best models selected by AICc
and Stepwise methods and corn yields n 2001 and 2002 at Moody and Brookings, respectively.

Moody Brookings
Systems
Intercept Slope Intercept Slope R?

AlCc

STVI 1.71 (+2.58) 0.87 (x0.28) 0515%* 0.46 (+0 56) 0.60 (+£0.26) 0.410%*

LTVI 1.26 (£2.07) 0.92 (0.23) 0.650** 017 (x0.47) 0.74 (x0.22) 0.592%*

STVI+LTVI 1.13 (x1.48) 0.93 (0 16) 0.790** 0.34 (£0.45) 0.66 (£0.21) 0.558%*

STVI+RS 1.60 (1.53) 0.88 (+0.17) 0.758** 0.40 (20.41) 063 (x£0.19) 0.578%*

LTVI+RS 010 (£1.55) 101 (£0.17) 0 811** 0.46 (0 46) 0.60 (£0.21) 0.507%*

STVI+LTVI+RS 1.38 (x1.26) 0.90 (x0.14) 0.831** 0.40 (£0.41) 0.63 (£0.19) 0.578%*
Stepwise

STVI 1.72 (£2.70) 0.87 (0.30) 0.492%* 0.46 (£0.56) 0.60 (+0.26) 0.410%*

LTVI 1.26 (£2.07) 0.92 (+0.23) 0.650%* 0.21 (£0.51) 0.72 (0.24) 0.538%*

STVI+LTVI 1.26 (2.07) 0.92 (0.23) 0 650%* 0.29 (0 45) 0.68 (x021) 0.574%*

STVI+RS 162 (£1.74) 0.88 (0.19) 0.708** 0.51 (£0.46) 0.59 (£0.22) 0.484%*

LTVI+RS 1.62 (x1.74) 0.88 (0.19) 0.708** 046 (x0.46) 0.60 (0.21) 0.507%*

STVI+LTVI+RS 1.62 (+1.74) 0.88 (+0.19) 0.708** 0.49 (0 47) 0.59 (£0.22) 0.484%%

Parentheses are confidence interval at 95% level. ** 1s significant at 95% level.
STVI. small temporal variability information, LTVI: large temporal vanability information, and RS* Remote Sensing

43, respectively) had severe collinearity problems (data not
shown).

Based on the results, the most useful variables to estimate
corn yield were different in each field. EIevaFion and EC,
were consistently the most useful variables in both fields
and most of the systems. These results might be contributed
to different landscapes and management histories of the
study fields.

Evaluation of Model Selection Methods

Table 3 and 4 show the intercept and estimated parameters
of the best models in each system. Care should be used in
considering the coefficients. For example, at Moody, EC,
and P had negative and positive coefficients, while these
were positively and negatively correlated with yield, respec-
tively. The equations developed by Stepwise method had
fewer explanatory variables and had lower R? values than
equations selected by AICc method in all systems. In Step-
wise method, NDVI, GDVI, and soil moisture before plant-
ing were the most common in models. GDVI correlated
positively with corn yield, but the coefficient was negative
in the equations. At Brookings, similar results were observed
with Moody. Soil moisture before planting had negative coef-
ficient in equation. EC,, and GDVI were the most common in
models developed by Stepwise method.

Table 5 show the intercept, slope, and R? of simple linear
regression between the estimated corn yields using the best

models selected by AICc and Stepwise methods and com
yields in 2001 and 2002 at Moody and Brookings, respec-
tively. The relationship between estimated value and mea-
sured values should be 1:1 (intercept=0 and slope=1).
Based on 95 % Confidence Interval (Cf), STVI+RS and
STVIHLTVI+RS system models selected by AICc were
slightly different from 0 in intercept and other models were
not different from 0 at Moody. All models were not different
from 1 in slope. All models selected by AICc had higher R®
values than models developed by Stepwise. At Brookings,
STVI+RS and STVI+LTVI+RS system models developed
by Stepwise were slightly different from 0 in intercept and
other models were not different from 0. All models were
slightly different from 1 in slope. All models, except
STVIH+LTVI system model, selected by AICc had higher R
values than models developed by Stepwise.

These results showed that model selection was different in
each field. Different number of variables were selected in dif-
ferent fields. The most common variables selected by AICc
and Stepwise were different. In validation, Stepwise was
slightly better than AICc at Moody and at Brookings AICc
was slightly better than Stepwise. Results suggest that the
AlICc approach can be used to identify the most useful infor-
mation and select the ‘best” yield models for production fields.
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