유비쿼터스 컴퓨팅 환경에서의 DICOM 설계에 대한 연구
— A Study on the Design of DICOM Integration Engine in the Ubiquitous Computing Environments —

가야대학교 방사선학과·고신대학교 보건과학과 박사과정
부산가톨릭대학교 보건과학대학 방사선학과·고신대학교 보건환경학부

임인철·하안래1)·김창수2)·황인철3)·육치상3)

— 국문초록 —

유비쿼터스 컴퓨팅 환경에서의 최근 ICT의 급속한 발전으로 관련 산업은 놀라운 성장을 하고 있다. 따라서 의료 정보사진 관련 디지털 방식의 시스템에서도 전자서비스 환경도 여러 형태의 모바일 장비 및 유선의 디바이스를 통한 시간, 장소에 관계없이 차별화된 진료 서비스가 가능하다. 그러므로 정보통신과 접목한 의료 정보 관련 솔루션의 도입은 병원 네트워크의 통합시스템이 주목을 받으며 시너지 효과를 나타내고 있다. 현재 병원의 PACS 솔루션은 의료영상 자원관련시스템으로 많은 병원들이 디지털 환경의 정보화를 위한 시스템으로 채택하고 있으며, 기존의 시스템을 무선통신, 인터넷 등의 영역으로 통합하여 유비쿼터스 컴퓨팅 환경의 개념이 형성되고 있다. 이런 시스템의 통합은 모바일 병원의 빠른 성장을 주도하고 있으며, 각각의 네트워크 및 인터넷 네트워크에 있는 진료 지원포트 및 응답은 통합적인 진료의 업무 프로세스를 요구하고 있다. 따라서 본 논문에서 설계하는 DICOM 엔진은 기존의 PACS DB 서버의 구조를 변경하지 않고 소호운용이 가능하며, 각각의 사용자의 요구에 응답하는 유·무선 통합의 진료지원 시스템이다.

중심 단어 : DICOM 엔진, 유비쿼터스 컴퓨팅, PACS

I. 서론

최근 5년간의 기술과 산업, 경제와 문화, 정치 모든 변화의 중심에 떨어진 것은 정보통신기술(ICT : Information Communication Technologies)이라 해도 과언이 아니다. 이와 같은 기술의 진보가 미래의 변화에 대한 의문이 분명하지만, 변화의 모습은 우리들의 모습도 정해진 것, 이루어진 혁신이 보є나 연결되고 원하는 것에 접촉할 수 있는 환경으로 미래를 묘사한다는 것이다. 이 같은 구상이 시간도 장소에 관계없이 정보에 접속할 수 있는 인터넷 혁명을 의미한다면, 결과를 더 나아가 어디에 정보가 심겨 있는 것이 바로 유비쿼터스 컴퓨팅(Ubiquitous Computing)의 모습이다.

유비쿼터스란 어제, 어디서나 존재한다는 뜻의 라틴어로, 유비쿼터스 컴퓨팅은 다양한 종류의 컴퓨터가 우리 주위에 내재되어 있어, 사용자가 정보에서 구애 받지 않고 컴퓨팅 환경을 이용할 수 있는 환경을 지칭한다. 유비쿼터스 컴퓨팅에 대한 주요 특징은 인간과 환경적인 기술로 자연스럽게 우리 주위에 파고들어야 한다는 눈에 안 보이는(Invincible) 컴퓨팅 개념이다. 그리고 현존하는 모든 컴퓨터를 연결해야 하며, 사용자가 컴퓨터를 사용하는지 아
난지를 의식할 수 없는 환경(Calm)을 구현해야 한다. 마치 앞으로 현실세계에서의 네트워크 연결을 의미하며, 실세계도 더욱 더 강화하는 특징이다. 이처럼 유비쿼터스 컴퓨팅 환경을 바탕으로 현재 거의 모든 생활현장에서 우리가 인식하지 못하는 사변에 깊이 사찰해 파고들고 있어. 특히 의료 서비스의란 관련 애플리케이션 및 솔루션은 여러 업계에서 환자뿐 아니라, 의료인의 업무 만족도를 고려한 개발이 이루어지고 있다. 의료서비스는 기존의 데이터 및 산업 정보 환경의 복합정보시스템(HIS : Hospital Information System) 및 방사선정보시스템(RIS : Radiological Information System)은 모바일 컴퓨팅 환경으로 치료 전달시스템(ODS : Order Communication System) 및 의료영상제 제공하는 기술로 진보하고 있으며, 유 - 무선 통합 솔루션을 위한 시도가 이루어지고 있다. 특히 PDA, 휴대전화, 무선 라운 환경을 이용한 모바일 환경의 복합 시스템은 원격진료 및 재래진료의 모바일 환 진 전문 시스템 구축이 가능하다. 그리고 환자 및 의료 인의 지로와 만족도를 고려한 환자에게 높은 양질의 진료 서비스가 신속히 진단하고 정확하게 가능하며, 의료진은 업무의 편리성 및 의료의 질적인 향상을 기대할 수 있다.

최근의 여러 브랜드는 무선 환경에서의 여러 시스템을 연구 및 도입하고 있으며, 앞으로 유비쿼터스 컴퓨팅 환경에서의 복합 통합 솔루션의 도입은 필수 사항으로 인식되고 있다. 그러나 기존 PACS(Picture Archiving and Communication System)과 정보통신기술의 통합에는 설계이야 할 과제가 남아있으며, 효율적인 시스템 운영을 위한 알고리즘 및 시스템 통합 솔루션의 연구가 필요하다.

현재 의료정보시스템의 기존 솔루션의 문제점 및 현주 소는 정형화되지 않은 업무 프로세스, 다양한 오디션 문서, 이질적인 업무 집단, 차별화 되지 않은 의료 정보 서비스, 외국 병원간의 경우에 대한 경쟁 구도 정책의 미비 등이 있다. 그리고 일부 병원별의 문제로는 유 - 무선 통합 솔루션 및 플랫폼(Platform)의 부재, 유선 및 무선 프로세스의 구분을 위한 네트워크 정책의 부재, 데이터의 접근 편의성 증대를 위한 요구, 전자적 품질 관리의 서비스 개선 요구, 모바일 솔루션의 데이터 및 이동성 장점의 복합, 무선 영역의 보안문제, 무선 네트워크 특성상의 연결의 불확실성의 문제가 있다.

따라서 본 논문에서는 디지털 병원은 유비쿼터스 환경 의 복합통합솔루션으로 시스템의 개념과 구성요소, 현재 의 정보통신기술 환경에서의 사용자가 환자의 영상 및 데이터의 액세스, 데이터베이스 서비스의 부재 경감 등에 대한 게이트웨이 역할의 간호 시스템을 설계한다. 그리고 통합 시스템은 경제력 있는 병원 업무의 효율성을 향상시키며, 병원 정보화에서의 연 솔루션을 위한 유비쿼터스 컴퓨팅 환경의 모바일 병원 시스템을 제안한다. 그러나 모바일 병원 시스템은 통신 환경 및 자원의 제한적 이용 측면에서 모바일 컴퓨팅의 단점을 가지고 있다. 이를 해결하기 위해서 움직이 환경에서의 효율적인 통신 환경을 위한 유 - 무선 통합 플랫폼 시스템을 설계하며, 실제적인 컴퓨팅 환경에서의 제한 솔루션의 안정성을 위한 요소들을 고려한다. 본 논문의 구성은 유비쿼터스 환경의 모바일 병원의 개념과 의료 응용분야를 기술하며, 부가적인 유 - 무선의 데이터 접근성 개선, 효율적인 자원 배분 정책, 유비쿼터스 컴퓨팅에서의 복합 통합솔루션을 위한 DICOM (Digital Imaging and Communication in Medicine) 에진 에디터의 설계를 제시한다. 그리고 실제 통합 환경에서 서의 기존의 솔루션의 환자별 데이터와 영상의 보안성은 의 지역 문제를 해결하기 위한 프로세스 정책 및 통합 플랫폼을 구성하기 위한 시스템의 관련 컴포넌트별 세부사항을 기술한다. 마지막으로 결론 및 향후 연구방향을 제시한다.

Ⅱ. 유비쿼터스 컴퓨팅 환경에서의 디지털 병원

최근 정보통신기술 관련 의료정보화 솔루션의 도입은 병원 정보 통합시스템의 구축이 주요한 현상으로 나타나 있다. 현재의 PACS는 의료영상저장전송시스템으로 현재 많은 병원들이 디지털 환경의 정보화를 위한 솔루션으로 채택하고 있다. PACS는 병원에서 영상 측정장치(Modality)로 채용한 의료영상들을 디지털화하여 저장 매체에 저장하거나 네트워크로 전송하여 각 진료 파트의 워크스테이션에서 실시간으로 조작가 가능한 시스템 통합 솔루션이다. 의료영상저장시스템의 프로토콜은 DICOM으로 의료분야 영상 표준형식을 따르며, DICOM 3.0은 TCP/IP 프로토콜을 기반으로 의료영상 전송 방법을 사용한다. 병원 디지털 시스템은 과거 병원의 환자 및 보호자의 외부 고객을 중심으로 운영하던 시대로부터 전공의 및 진료파직원의 내부 고객을 통해 업무를 수행하는 미래 지향적 디지털 병원의 환경 구축이 가능하게 했다. 그럽으 로 디지털 병원 환경에서는 기존의 시스템을 무선 인터넷 등의 영역으로 통합하는 경향이다. 그러므로 디지털 병원 지향의 시스템 통합은 유비쿼터스 환경의 모바일 병원
원의 개념을 형성하고 있으며, 실제 진료 및 수술 전에 입체 화면을 띄워 놓고 수술을 가상적으로 실시하여 환자에 대한 보다 정확한 정보를 습득하게 시술이 시행되고 있다.

이런 기술들의 융합은 DICOM을 기반으로 하는 PACS 뿐만 아니라 관련 의료정보(Medical IT)산업 전체를 하나로 통합하는 유비쿼터스 환경 관련 솔루션을 개발하는 계기를 마련하고 있다. 먼저 디지털 병원 환경의 유비쿼터스 컴퓨팅을 정의 및 특징을 알아본다.

유비쿼터스 컴퓨팅 기술이란 수많은 환경과 대상물에 보이지 않는 컴퓨팅이 성가지 않고 이들이 전자공간으로 연결되므로 정보를 주고받는 여러 메디컬 펜치하는 컴퓨팅으로 인해 사람이 인식하지 못하는 사이 정보가 교류되는 공간인 유비쿼터스 공간을 창조하는 기술을 말한다. 유비쿼터스 공간에서는 물리적 환경과 사물들 간에도 전자공간과 같이 정보가 흐리 다니며 마치 사람이 그 속에 들어가 있는 것처럼 자유롭게 정보를 수집 및 발전하고 사람들이 원하는 활동을 수행한다. 결국 유비쿼터스 혁명은 물리공간과 전자공간의 한계를 동시에 극복하고 사람, 컴퓨터, 사물들을 하나로 연결함으로써 최적화된 공간을 창출하는 마지막 단계의 공간혁명이다. 대체사회는 물리공간과 전자공간이 하나로 통합되는 4차의 공간혁명을 유비쿼터스 환경이 이끌어 갈 것으로 해도 과언이 아니다. 유비쿼터스 컴퓨팅은 1988년 Mark Weiser가 제시한 개념이며, 주요특징은 다음과 같다.

먼저 유비쿼터스 컴퓨팅은 인간 친화적인 기술로 사용자가 거부받거나 방해 받지 않도록 자연스럽게 패드들어야 한다는 의미를 가진다. 그리고 유비쿼터스 컴퓨팅은 현존의 모든 컴퓨팅뿐만 아니라 컴퓨팅 기능이 내장된 모든 컴퓨팅을 연결해야 한다. 여기서 사용자는 자신이 컴퓨팅을 사용하는지 의식할 수 없는 환경에 구현하는 사용자 중심적 환경을 구현한다. 마치마무리에 이런 유비쿼터스 컴퓨팅은 가장 세계에서 이루어지는 작업이 아닌 현실 세계에서의 네트워크 연결을 의미를 가진다. 그러므로 사회 전반의 유비쿼터스 기술을 위해서 정부의 IT 산업정책도 유비쿼터스 사회구축을 목표로 유비쿼터스를 지능기반 사회로 표현하고, 그로야지 지향으로 IT839 전략을 추진하고 있다. IT839는 네트 신회 정보통신서비스, 3대 차세대 인프라, 9대 신성장 동력산업의 IT 산업 육성 전략이며, 유비쿼터스 관련은 유플랫폼(WebRo, DBM(Digital Multimedia Broadcasting), 홍네트워크, RFID(Radio Frequency IDentification) 등의 기술 육성이 포함되어 있다.

특히 유비쿼터스 컴퓨팅의 시대적인 환경의 미세로 새로운 의료정보산업 솔루션들이 유비쿼터스 컴퓨팅 환경의 의료정보통합(Medical Information Integration)을 위한 디지털 환경의 모바일 병원의 현실에 관심이 높아지고 있으며, 관련업체 및 연구가 이루어지고 있다. 이런 관련 산업의 세계적인 성숙도의 증가로 산업계는 IT 솔루션들을 PACS와 접목하여 환자 및 의료진들이 신뢰하는 시스템으로의 업그레이드를 통한 시너지효과를 가져오고 있다.

모바일 병원을 위한 통합의 예는 다음과 같다. 고가의 장비가 필요없이 3D 솔루션을 이용하여 PACS Viewer에서 직접 영상의 재구성하는 기술, 그리고 정형외과의 수술통제 시에 사용하는 Orthopedic Application, CAD/CAM 기술을 이용한 영상전산(Diagnosis)기능 및 암의 구별 솔루션, 혈관내·외으로의 사이즈 측정이 가능한 Cardiology PACS 등의 에뮬레이션 통합이 있다. 그리고 유비쿼터스 컴퓨팅의 솔루션으로 인해 어디서든 데이터 및 영상의 활용이 mobile PACS, portable digital X-ray solution, 영상의 판독 시 목소리를 인식하는 voice recognition 등이 있다.

III. 유비쿼터스 환경의 DICOM 연진 구현 및 시스템 통합 설계

1. DICOM 연진 설계

의료 영상 저장 및 데이터의 교환과 관련한 국제표준은 DICOM 표준과 HL7(Health Level Seven) 표준, 그리고 유럽연합(EU)의 CEN/TC212로 대비별한다(4-6). 근데는 이런 여러 표준을 IHE(Integrating the Healthcare Enterprise)에서는 분산된 표준의 일원화, 관련업체의 통일된 표준준수 등의 이유로 정의 수정 및 통합을 위한 실무를 진행하고 있다. 그러나 관련업체의 장비, 이전 시스템의 인그래이드 문제, 통상 프로파일의 부재로 많은 제약 사항이 따르고 있다. 따라서 각 병원 장비 환경 및 업체의 이견으로 실제 시스템 구현에서 적합한 운영성의 문제가 큰 시스템 장애로 나타나고 있다(9,10).

시스템 설계 및 구현과 앞서 기존의 PACS 환경의 DICOM을 분석하고, 다음에 DICOM 연진 모듈의 환경도 및 유·무·수 통합 시스템 제시한다(Fig. 1).

PACS는 세 가지의 정의 가능한 도메인으로 나눌 수는 DICOM 내부 자원의 장비간의 이미지 통신에 대한 시스템의 지원을 위한 막대방사선학(Teleradiology)의.
다른 PACS의 데이터 연결 도메인, 마지막으로 전동적인 필름 프린트나 DICOM 형식의 이미지 매체 도메인이다. DICOM 엔진은 기존의 PACS controller의 기능을 수행하는 모듈로서 DICOM 및 Non-DICOM의 입력되는 데이터를 자체 API를 기반으로 출력・변환하여 각각의 사용자(유선・무선 환경)에게 서비스한다. 설계하는 DICOM 엔진 모듈의 4가지 코포넌트로 구성되며, 각 코포넌트의 구성은 다음과 같다.

1) DICOM 오브젝트를 입력받는 receiver
2) 입력 DICOM 오브젝트를 수정하는 프로세싱 바이포 라인
3) 각 수정된 오브젝트를 미리 정의한 개체로 출력하는 라우팅 sender
4) 유선 및 무선 단말기의 네트워크 요청에 대한 지원 데이터베이스 서비 에이전트

엔진은 기존 DICOM의 데이터 요청을 변경 및 유연하게 데이터를 각각의 프로세스별로 다중 시프트 포함 방식으로 처리하는 시스템으로 전체적인 구성은 receiver에서 기능적인 데이터별로 큐(queue) 방식으로 입력되는 엔진 내에서 각각의 프로세스로 처리하여 sender에서 멀티 프로세스로 각각의 데이터를 필요로 하는 곳으로 출력하는 포워딩 및 라우팅(routing) 슬루션이다. 그리고 유비쿼터스 환경에서의 플랫폼 통합을 위한 시스템으로 DICOM 엔진에 부가적으로 인터넷의 웹 및 무선 랜, 이동통신 지 원의 부가 이미지 처리 및 데이터 서버를 지원하여 엔진과 서버가 유・무선 동합의 어플리케이션을 하는 시스템으로 구성한다. 추가하여 지원 서버는 기존 데이터베이스 서버의 부하를 예비적으로 감당하는 역할로 각 사용자 요청의 데이터를 PACS 데이터베이스에서 가져와서 엔진의 서버에서 수정 및 업데이트하는 데이터의 기능을 수행한다. 다음은 유・무선에서 DICOM 엔진이 서버와 연동하여 처리하는 레이아웃을 나타낸다(Fig. 2).

2. DICOM 엔진의 동작

엔진의 모듈에 입력되는 DICOM 오브젝트는 세 가지 구분에 의해 리시버에 입력된다. DICOM 엔진 내의 리시버는 입력 구분을 할며, 처리 코포넌트와 입력 레이어의 체널 형태를 나타낸다(Fig. 3). 각각의 입력으로 첫째는 네트워크를 통한 PACS로부터의 이미지로 SCP(Service Class Provider)로서 DICOM service storage이며, 엔진의 입력은 PACS 관점에서는 하나의 프로세스를 수행할 노드(Node)를 형성한다.

들해는 DICOM 표준 part 12(Media Formats and Physical Media for Media Interchange)에 따른 입력으로 DICOM CD-Rs, DVD 형식의 데이터이다. 섹션은 DICOM Part 10(Media Storage and File Format for Media Interchange)의 로컬 컴퓨터의 파일 시스템으로 저장된 파일의 입력이다.

입력된 DICOM 오브젝트는 추상데이터 구조로 디코딩
3. DICOM 엔진 구현

DICOM 엔진은 자바 기반의 오픈 소스 프로젝트로 구현한다. 엔진의 각 컴포넌트인 프로세스의 파이프라인은 플러그인에 의해 구현되며, 엔진 내의 플러그인 프로그램은 external XSLT(Extensible Stylesheet Language)로 프로그래밍 한다.

플러그인의 사용으로 DICOM 오브젝트를 XML(Extensible Markup Language)으로 변환되며, 엔진의 입력 및 출력 채널로서 DICOM service storage, DICOM CD-ROMs, CD Torrent 시스템을 정의한다. DICOM 엔진 응용프로그램의 계층적인 구조와 자바 클래스 패키지는 다음과 같다(Fig. 5).

엔진 모듈의 기능적인 구현은 프로그램 라이브러리로 구현하며, 자바 기반의 프로젝트의 dcm4che 라이브러리를 사용한다. DICOM 엔진의 플러그인은 프로그램 멀티레이어 자바 클래스를 상속받으며, 각 입상의 유저는 세부적인 DICOM 프로토콜의 네트워크 통신이 및 플러그인의 기능을 알지 못하여라도 접근하여 환자의 관련 데이터의 사용이 가능하다. 단지 유저는 다른 데이터 포맷으로 변환할 데이터의 처음과 끝을 선택하는 인터페이스와 구성파일에 대한 인터페이스의 GUI를 사용하여 프로그램 실행이 가능하다. 그림 7은 응용프로그램의 실행 화면을 나타낸다. 그리고 엔진에 추가적인 기능의 구현은 라이브러리에 정의된 플러그인을 추가하고 컴파일하여 다른 응용프로그램으로 사용할 수 있다.

DICOM 엔진의 응용프로그램을 구현하기 위해서는 JAVA 렌더링 라이브러리가 필요하며, 자바 애플리케이션 실행하기 위한 관련 컴파일 하드웨어 사양도 갖추어야 한다. 그리고 오픈 소스 프로젝트는 GNU general public license로서 인터넷에서 다운로드 가능하며, 프리웨어로 누구나 수정 및 컴파일하여 구현할 수 있다(Fig. 6).

4. 시스템 통합의 설계

구현하는 DICOM 엔진은 유비쿼터스 환경의 유니버서스를 통합의 습무도로 전체 시스템 구성이 가능하며, 여러 장치들로부터 입력되는 각각의 네트워크 사용자를 위하여 데이터를 변환하는 어플리케이션이 요구된다. 그러므로 엔진은 통합 네트워크 환경의 모듈로서 기존의 PACS 환경에서의 네트워크 사용자의 서비스를 위한 시스템의 추가 없이
다지 DICOM 엔진에 액세스하는 사용자 메시지에 대한 로그 및 구성 파일을 PACS 데이터베이스에 라우팅하기만 한다. 그러므로 외부의 레코드 액세스로 인한 중량의 PACS 서버의 부하 및 트래픽은 분산하는 역할을 하며, 엔진의 서버가 환자의 데이터 및 이미지를 수정하여 PACS 데이터베이스에 업데이트하는 시스템이다(Fig. 8).

다음은 통합 시스템의 각 네트워크별 구성은 다음과 같다.

현재의 여러 병원에서는 점점적으로 다양한 네트워크 시스템들의 통합을 위한 솔루션이 진행 및 시도 되고 있다. 그러나 독립된 병원 환경의 시스템은 한 번째 업그레이드 하거나 교체하는 것은 거의 불가능하다. 그러므로 기존 모든 시스템의 변경없이 데이터베이스 구조와 환경이 가능한 영역의 데이터베이스의 설계가 필요하다.

의료 정보영역에서 이미지 교환을 위한 방법으로는 DICOM 프로토콜 메시지에 대한 PACS의 DICOM CD-Rs를 많이 사용한다. PACS 워크스테이션은 DICOM 지원의 로딩이 가능하면 일반적으로 두 가지의 방법을 따른다. 첫째는 환자 데이터 및 이미지를 로컬 워크스테이션으로 복사(import)하고, 둘째는 PACS에서 복사한다. 그러나 이 미 존재하는 데이터 및 이미지를 로딩하면 같은 고유 환자 ID를 사용하므로 이미지 상관관계(correlation)가 문제가 있다. DICOM 앱호도는 DICOM CD-Rs에 대한 복사는 자동적으로 되며, PACS로부터의 복사로 데이터 엔리버트의 환자 ID와 접근번호로 구별하여 각각의 이미지를 구별하여 잘못된 상관관계를 방지한다. 로딩된 환자의 DICOM 프로토콜 지원의 메시지나 앱호 모듈의 구성파일로 접근하도록 구현한다.

무선 네트워크의 통합 시스템은 환자의 접근에서의 진료를 위한 HIS/RIS/PACS/OCIS의 통합 솔루션이다. 임상 의의 및 간호사의 환자의 의무 기록 업데이트, 의료 영상의 저장 및 불필요한 종목기록을 최소화하기 위한 방법으로 FDA, handeld computers, 이동통신을 통한 진료의 업무 프로세스 영역을 가진다.

시스템 구성은 무선 LAN 및 인터넷 상의 연결로 사용자 단말기의 다양한 네트워크 액세스 및 응답하는 HTTP (Hiper Text Transfer Protocol)로 서버로서의 시스템이고, PACS DB 서버에 각각의 사용자가 요청한 환자 정보를 데이터베이스 서버에서 로컬의 DICOM 통합시스템의 데이터베이스로 가져와서 요청 사용자에게 서비스하는 클라이언트를 수행하는 시스템 구성을 가진다. 다른 하나는 CDMA (Code Division Multiple Access) 또는 GSM(Global System for Mobile communication)방식의 이동 통신망
물을 이용한 사용자의 요청에 응당하는 미들웨어 시스템이다(Pig 9).

구현한 통합 솔루션의 PukiWiki는 웹 기반의 PACS 서버와 연결된 DICOM 프로토콜 지원의 이미지 부여 생성하는 서버 소프트웨어이며, 사용자는 자유롭게 유·무선 네트워크를 통해 마크업 언어(markup language)에 대한 지식이 없더라도 웹페이지를 업데이트하고, 생성 및 수정이 가능하다. 모든 인스톨러는 소프트웨어의 오픈 소스이며, 병원 내트워크에 에세스하는 모든 임상의 및 진료 지원파트는 Wiki 웹페이지의 인증을 간단히 수행하며, FDA 및 애널 결과를 사용하여 PACS 이미지를 보거나 관련 환자데이터를 수정할 수 있다.

DICOM 엔진의 통합 시스템에서 사용하는 인증 절차는 전통적인 HTML 스크립트 방식의 애널 결과 인증보다 간단하고 빠르게 인증이 수행되며, Wiki 마크업 언어는 전문적인 학습이 없이도 사용 가능하다. 그러므로 다양한 네트워크의 각 사용자는 여러 단말기를 통하여 시간 및 장소에 제한없이 환자데이터를 검색, 저장, 업데이트, 수정의 요청이 가능하고, 임상의들의 커뮤니티를 위한 자료 수집 및 학생들의 교육용 검색이 가능하다.

IV. 결론

기존의 DICOM 기반의 의료영상 저장시스템(PACS)은 환자의 진료영상 및 데이터는 표준 프로토콜에 따라 데이터베이스, 내트워크의 전송이 가능하다. 그러나 다양한 내트워크 환경에서 에세스별 서비스를 수행하여 환자의 서비스 개선 및 의료진의 업무 만족을 위한 통합적인 계


Abstract

A Study on the Design of DICOM Integration Engine in the Ubiquitous Computing Environments

In-Chul Im • An-rye Ha1 • Chang-Soo Kim2 • In-Chul Hwang3 • Chi-Sang Ok3

Department of Radiological Science, Kyung University
Department of Health Science, graduate School, Kosin University1
Department of Radiological Science College of Health Science, Catholic University of Pusan2
Faculty of Health and Environment, Kosin University3

In the ubiquitous computing environments, ICT industries of current society are developed in enormous growth. Medicine or patients with mobile devices can access at any time, any place. The medical procedures at the patient bedside are out of the scope of current systems, which means that patient record and image data access during the medical visit or the execution, recording and confirmation of the medicine prescriptions, still do not enjoy computerized support. Today, the exchange of medical images and clinical information is well defined by DICOM and HL7 standards. The DICOM independent terminal equipment image access system was developed in which a DICOM Engine acts as the gateway between a PACS DB and user's terminal. Implementation system is compatible with most currently available Integration system models. This paper presents a software technology where the medical and nursing staff will be equipped with any device connected by wire and wireless to a central server that provides access to the electronic patient records and that will actively inform about tasks pending distribution. The prototype described in this article implements a medical images and structured reports server that makes the search and recovery of data stored in the DICOM standard possible.

Key Words: DICOM Engine, Ubiquitous Computing, PACS, HIS, RIS