Design and Synthesis of Novel Antidiabetic Agents

  • Lee Joon Yeol (College of Pharmacy & Research Institute of Drug Development, Chonnam National University) ;
  • Park Won-Hui (College of Pharmacy & Research Institute of Drug Development, Chonnam National University) ;
  • Cho Min-Kyoung (College of Pharmacy & Research Institute of Drug Development, Chonnam National University) ;
  • Yun Hyun Jin (College of Pharmacy & Research Institute of Drug Development, Chonnam National University) ;
  • Chung Byung-Ho (College of Pharmacy & Research Institute of Drug Development, Chonnam National University) ;
  • Pak Youngmi Kim (Asan Institute for Life Sciences, Department of Internal Medicine, College of Medicine, University of U1san) ;
  • Hahn Hoh-Gyu (Life Science Division, Korea Institute of Science and Technology) ;
  • Cheon Seung Hoon (College of Pharmacy & Research Institute of Drug Development, Chonnam National University)
  • Published : 2005.02.01

Abstract

The synthesis and structure-activity relationships of a novel series of substituted quercetins that activates peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) are reported. The $PPAR{\gamma}$ agonistic activity of the most potent compound in this series is comparable to that of the thiazolidinedione-based antidiabetic drugs currently in clinical use.

Keywords

References

  1. Brownlee, M., Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813-820 (2001) https://doi.org/10.1038/414813a
  2. Buckle, D. R., Cantello, B. C. C., Cawthorne, M. A., Coyle, P. J., Dean, D. K., Faller, A., Haigh, D., Hindley, R. M., Jefcott, L. J., Lister, C. A., Pinto, I. L., Rami, H. K., Smith, D. G., and Smith, S. A., Non-thiazolidinedione antihyperglycemic agents. 2: alpha-carbon substituted beta-phenylpropanoic acids. Bioorg. Med. Chem. Lett., 6, 2127-2130 (1996) https://doi.org/10.1016/0960-894X(96)00382-4
  3. Cantello, B. C., Cawthorne, M. A., Haigh, D., Hindley, R. M., Smith, S. A., and Thurlby, P., [omega-(Heterocyclylamino)alkoxy]benzyl]-2,4-thiazolidinediones as potent antihyperglycemic agents. J. Med. Chem., 37, 3977-3985 (1994). https://doi.org/10.1021/jm00049a017
  4. Clark, D. A., Goldstein, S. W., Volkmann, R. A., and Eggler, J. F., Substituted dihydrobenzopyran and dihydrobenzofuran thiazolidine-2,4-diones as hypoglycemic agents. J. Med.Chem., 34, 319-325 (1991) https://doi.org/10.1021/jm00105a050
  5. DeFronzo, R. A., Bonadonna, R. C., and Ferrannini, E., Pathogenesis of NIDDM. A balanced overview. Diabetes Care, 15, 318-368 (1992) https://doi.org/10.2337/diacare.15.3.318
  6. Fujita, T., Sugiyama, Y., Taketomi, S., Sohda, T., Kawamatsu, Y., Iwatsuka, H., and Suzuoki, Z., Reduction of insulin resistance in obese and/or diabetic animals by 5-[4-(1-methylcyclohexylmethoxy) benzyl]-thiazolidine-2,4-dione (ADD-3878, U-63,287, ciglitazone), a new antidiabetic agent. Diabetes, 32, 804-810 (1983). https://doi.org/10.2337/diabetes.32.9.804
  7. Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M., and Kliewer, S. A., An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem., 270, 12953-12956 (1995) https://doi.org/10.1074/jbc.270.22.12953
  8. Marcus, A. O., Safety of drugs commonly used to treat hypertension, dyslipidemia, and type 2 diabetes (the metabolic syndrome): part 1. Diabetes Technol. Ther., 2, 101-110 (2000a) https://doi.org/10.1089/152091599316801
  9. Marcus, A. O., Safety of drugs commonly used to treat hypertension, dyslipidemia, and Type 2 diabetes (the metabolic syndrome): part 2. Diabetes Technol. Ther., 2, 275-285 (2000b) https://doi.org/10.1089/15209150050025258
  10. Momose, Y., Meguro, K., Ikeda, H., Hatanka, C., Oi, S., and Sohda, T., Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem. Pharm. Bull., 39, 1440-1445 (1991) https://doi.org/10.1248/cpb.39.1440
  11. Morral, N., Novel targets and therapeutic strategies for type 2 diabetes. Trends in endocrinology and metabolism, 14, 169-175 (2003) https://doi.org/10.1016/S1043-2760(03)00031-6
  12. Nuraliev, Iu. N. and Avezov, G. A., The efficacy of quercetin in alloxan diabetes. Eks. Klin. Farmakol., 55, 42-44 (1992)
  13. Nuss, J. M. and Wagman, A. S., Recent advances in therapeutic approaches to type 2 diabetes, In Annual Reports in Medicinal Chemistry, Doherty, A. M., Ed., Academic Press, San Diego, CA, 35, 211-220 (2000)
  14. Porte, D., Jr. and Schwartz, M. W., Diabetes complications: why is glucose potentially toxic? Science, 272, 699-700 (1996) https://doi.org/10.1126/science.272.5262.699
  15. Satyanarayana, N. and Periasamy, M., Hydroboration or hydrogenation of alkenes with cobalt(II) chloride-sodium borohydride. Tetrahedron Lett., 25, 2501-2504 (1984) https://doi.org/10.1016/S0040-4039(01)81215-6
  16. Shetty, A. K., Rashmi, R., Rajan, M. G. R., Sambaiah, K., and Salimath, P. V., Nutrition Research (New York, NY, United States), 24, 373-381 (2004) https://doi.org/10.1016/j.nutres.2003.11.010
  17. Shinkai, H., Onogi, S., Tanaka, M., Shibata, T., Iwao, M., Wakitani, K., and Uchida, I., Isoxazolidine-3,5-dione and noncyclic 1,3-dicarbonyl compounds as hypoglycemic agents. J. Med. Chem., 41, 1927-1933 (1998) https://doi.org/10.1021/jm970771m
  18. Sohda, T., Mizuno, K., Imamiya, E., Sugiyama, Y., Fujita, T., and Kawamatsu, Y., Studies on antidiabetic agents. II. Synthesis of 5-[4-(1-methylcyclohexylmethoxy)-benzyl]thiazolidine-2,4- dione (ADD-3878) and its derivatives. Chem. Pharm. Bull., 30, 3580-3600 (1982) https://doi.org/10.1248/cpb.30.3580
  19. Varma, S. D., Mizuno, A., and Kinoshita, J. H., Diabetic cataracts and flavonoids. Science, 195, 205-206 (1977) https://doi.org/10.1126/science.401544
  20. Zimmet, P., Alberti, K. G. M. N., and Shaw, J., Global and societal implications of the diabetes epidemic. Nature, 414, 782 -787(2001) https://doi.org/10.1038/414782a