Effect of Low Adapted Temperature and Medium Composition on Growth and Erythropoietin (EPO) Production by Chinese Hamster Ovary Cells

  • Published : 2005.02.01

Abstract

Temperature and medium composition were changed with the aim of increasing growth and erythropoietin (EPO) production in EPO-producing Chinese hamster ovary (CHO) cells. We used the CHO cell line, IBE, and its derivative, CO5, which over-expresses the first two enzymes of the urea cycle, carbamoyl phosphate synthetase I (CPS I) and ornithine transcar-bamoylase (OTC). When supplements were added to the medium at $33\;^{\circ}C$, the growth of IBE and CO5 cells increased by $27\%\;and;26\%$, respectively and the maximum yield of EPO was increased by $40\%$ in both cell lines. The absolute EPO concentration in the CO5 cells was always $55{\sim}60\%$ higher than in the IBE cells. In addition, when the two cell lines were continuously cultured with supplements at $33\;^{\circ}C$ until their growth rates approached those at $37\;^{\circ}C$, the growth rates of both IBE and CO5 cells increased by $54\%$ and their maximum EPO levels increased by up to $73\%\;and\;56\%$, respectively. Therefore, the growth and EPO expression levels of CO5 cells increased 2.2-fold and 2.6-fold, respectively, compared to those of the IBE cells. These results indicate that adaptation to lower temperature as well as medium supplementation could be important for improving cell growth and EPO production.

Keywords

References

  1. Andersen, D. C. and Goochee C. F., The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cell. Biotechnol. Bioeng., 47, 96-110 (1995) https://doi.org/10.1002/bit.260470112
  2. Barnes, D. and Sato, G., Methods for growth of culture cells in serum-free medium. Analytical. Biochem., 102, 255-270 (1980) https://doi.org/10.1016/0003-2697(80)90151-7
  3. Borys, M. C., Linzer, D. I. H., and Papoutsakis, E. T., Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Biotechnology, 11, 720-724 (1993) https://doi.org/10.1038/nbt0693-720
  4. Butler, M. and Spier, R. E., The effects of glutamine utilization and ammonia production on the growth of BHK cells in microcarrier culture. J. Biotechnol., 1, 187-219 (1984) https://doi.org/10.1016/0168-1656(84)90004-X
  5. Chung, M. I., Lim, M. H., Lee, Y. J., Kim, I. H., Kim, I. Y., Kim, J. H., Chang, K. H., and Kim, H. J., Reduction of ammonia accumulation and improvement of cell viability by expression of urea cycle enzymes in Chinese Hamster Ovary Cells. J. Microbial Biotechnol., 13, 217-222 (2003)
  6. Cruz, H. J., Freitas, C. M., Alves, P. M., Moreira, J. L., and Carrondo, M. J. T., Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells. Enzyme and Microbial Technology., 27, 43-45 (2000) https://doi.org/10.1016/S0141-0229(00)00151-4
  7. Fox, S. R., Patel, U. A., Yap, M. G., and Wang, D. I., Maximizing interferon-gamma production by Chinese hamster ovary cells through temperature shift optimization: experimental and modeling. Biotechnol. Bioeng., 85, 177-184 (2004) https://doi.org/10.1002/bit.10861
  8. Furukawa, K. and Ohsuye, K., Effect of culture temperature on a recombinant CHO cell line producing a C-terminalamidating enzyme. Cytotechnology, 26, 153-164 (1998) https://doi.org/10.1023/A:1007934216507
  9. Glassy, M. C., Tharaken, J. P., and Chau, P. C., Serum-free media in hybridoma culture and monoclonal antibody production. Biotechnol. Bioeng., 32, 1015-1028 (1988) https://doi.org/10.1002/bit.260320809
  10. Kim, N. Y., Lee, Y. J., Kim, H. J., Choi, J. H., Kim, J. K., Chang, K. H., Kim, J. H., and Kim, H. J., Enhancement of erythropoietin production from Chinese hamster ovary (CHO) Cells by introduction of the urea cycle enzymes, cabamoyl phosphate synthetase I and ornithine transcarbamoylase. J. Microbial Biotechnol., 14, 844-851 (2004)
  11. Kim, T. K., Ryu, J. S., Chung, J. Y., Kim, M. S., and Lee, G. M., Osmoprotective effect of glycine betaine on thrombopoietin production in hyperosmotic Chinese hamster ovary cell culture: clonal variations. Biotechnol. Prog., 16, 775-781 (2000) https://doi.org/10.1021/bp000106y
  12. Kimura, R. and Miller, W. M., Effects of elevated pCO2 and/or osmolality on the growth and recombinant tPA production of CHO cells. Biotechnol. Bioeng., 52, 152-160 (1996) https://doi.org/10.1002/(SICI)1097-0290(19961005)52:1<152::AID-BIT15>3.0.CO;2-Q
  13. Lin, A. A., Kimura, R., and Miller, W. M., Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol. Bioeng., 42, 339-350 (1993) https://doi.org/10.1002/bit.260420311
  14. Liu, C. H., Chu, I. M., and Hwang, S. M., Factorial designs combined with the steepest ascent method optimize serumfree media for CHO cells. Enzyme and Microbial Technology., 28, 314-321 (2001) https://doi.org/10.1016/S0141-0229(00)00346-X
  15. Park, H. S., Kim, I. H., Kim, I. Y., Kim, K. H., and Kim, H. J., Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinesehamster ovary dhfr-cells decreases accumulation of ammonium ion in culture media. J. Biotechnol., 8, 1129-1140 (2000)
  16. Raghu, H. M., Nandi, S., and Reddy, S. M., Effect of insulin, transferrin and selenium and epidermal growth factor on development of buffalo oocytes to the blastocyst stage in vitro in serum-free, semidefined media. Vet Rec., 151, 260- 265 (2002) https://doi.org/10.1136/vr.151.9.260
  17. Renard, J. M., Spagnoli, R., Mazier, C., Salles, M. F., and Mandine, E., Evidence that monoclonal antibody production kinetics is related to the integral of viable cells in batch systems. Biotechnol. Lett., 10, 91-96 (1988) https://doi.org/10.1007/BF01024632
  18. Reuveny, S., Velez, D., Macmillan, J. D., and Miller, L., Factors affecting cell growth and monoclonal antibody production in stirred reactors. J. Immunol. Methods, 86, 53-59 (1986) https://doi.org/10.1016/0022-1759(86)90264-4
  19. Ryu, J. S., Kim, T. K., Chung, J. Y., and Lee, G. M., Osmoprotective effect of glycine betaine on foreign protein production in hyperosmotic recombinant chinese hamster ovary cell cultures differs among cell lines. Biotechnol. Bioeng., 70, 167-175 (2000) https://doi.org/10.1002/1097-0290(20001020)70:2<167::AID-BIT6>3.0.CO;2-P
  20. Schneider, Y. J., Marison, I. W., and Stockar, U., The importance of ammonia in mammalian cell culture. J. Biotechnol., 46, 161-185 (1996) https://doi.org/10.1016/0168-1656(95)00196-4
  21. Sikdar, S. K. and Sawant, S. B., Ammonia removal from mammalian cell culture medium by ion-exchange membranes. Sep. Sci. Technol., 29, 1579-1591 (1994) https://doi.org/10.1080/01496399408007375
  22. Yang, M. and Butler, M., Effect of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol. Bioeng., 68, 370-380 (2000) https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K
  23. Yang, M. and Butler, M., Effect of ammonia glucosamine on the heterogeneity of erythropoietin glycoforms. Biotechnol. Prog., 18, 129-138 (2002) https://doi.org/10.1021/bp0101334
  24. Yoon, S. K , Song, J. Y., and Lee, G. M., Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in chinese hamster ovary cells. Biotechnol. Bioeng., 82, 289-298 (2003) https://doi.org/10.1002/bit.10566
  25. Zanghi, J. A , Schmelzer, A. E., Mendoza, T. P., Knop, R. H., and Miller, W. M., Bicarbonate concentration and osmolality are key determinants in the inhibition of CHO cell polysialylation under elevated pCO(2) or pH. Biotechnol. Bioeng., 65, 182-191 (1999) https://doi.org/10.1002/(SICI)1097-0290(19991020)65:2<182::AID-BIT8>3.0.CO;2-D