Magnitudes of the Harmonic Components Emitted from Utrasonic Contrast Agents in Response to a Diagnostic Utrasound: Theoretical Consideration

진단용 초음파에 의해 가진된 초음파 조영제에서 방사하는 하모닉 성분의 크기: 이론적 고찰

  • 강관석 (제주대학교 의공학협동과정) ;
  • 유지철 (제주대학교 의공학협동과정) ;
  • 팽동국 (제주대학교 해양과학부) ;
  • 임성민 ((주)아이블휴먼스캔) ;
  • 최민주 (제주대학교 의과대학 의학과)
  • Published : 2005.02.01

Abstract

This study considers the magnitude of the harmonic components radiated from the ultrasonic contrast agents (UCA) activated by a typical diagnostic ultrasound. The nonlinear dynamic response of UCA to a 2 MHz diagnostic ultrasound pulse was predicted using Gilmore Model. The elastic property of the shell membrane of the UCA was ignored in the numerical model. Simulation was carried out for the UCA varying from 1 - 9 $\mu$m in its initial radius and the driving diagnostic ultrasound whose mechanical index (MI) ranges from 0.125 to 8. The powers of the sub. ultra and second harmonics of the acoustic signal from the UCA activated were compared with that of the fundamental component. The results show that. if the UCA is bigger than its resonant size (2 $\mu$m in radius for the present case) the sub harmonic power was much bigger than the fundamental. In particular, the 2nd harmonic component currently used as an imaging parameter for the harmonic imaging, was predicted to be lower in power than both the sub and the ultra harmonic component. This study indicates that, for obtaining harmonic imaging with UCA, the sub or ultra harmonics could be taken as imaging parameters better than the 2nd harmonic component.

진단용 초음파에 의해 가진된 초음파 조영제에서 방사하는 하모닉 성분의 크기를 이론적으로 고찰하였다. 본 연구에서는 2 MHz 진단용 초음파 펄스에 의한 초음파 조영제의 비선형 동적 반응을 Gilmore Model을 이용하여 수치 해석하였다. 초음파 조영제의 탄성 효과는 무시하였다. 초음파 조영제 반경의 크기 (1-9 $\mu$m)와 초음파의 MI 값 (0.125-8)을 변화시키면서 발생된 서브, 울트라. 2차 하모닉 성분의 파워를 기본 주파수 성분과 비교하였다. 시뮬레이션 결과, 초음파 조영제가 공진 반경 (2 $\mu$m) 보다 클 경우, 초음파 조영제에서 방출하는 서브 하모닉의 파워가 기본 주파수 것 보다 압도적으로 크게 나타났다. 특히 하모닉 영상에서 사용하는 2차 하모닉의 파워는 서브 및 울트라 하모닉 성분 보다 낮은 값을 가지는 것으로 예측되었다. 본 연구 결과는 초음파 조영제를 이용하여 하모닉 영상을 구현할 경우, 서브 및 울트라 하모닉 성분이 2차 하모닉 성분 보다 우수한 영상 변수가 될 수 있음을 시사한다.

Keywords

References

  1. Choi M J. Principles of the diagnostic uses of ultrasound and their clinical utilities. J. Korean Society for Noise & Vibration Engineering. 10 (4), 729-742, 2000
  2. Choi M J. Application of ultrasound in Medicine: Therapeutic ultrasound and ultrasound contrast agent. J Korean Society for Noise & Vibration Engineering. 10 (4), 743-759. 2000
  3. 최민주. Physical principles of harmonic imaging. 대한초음파의학회 논문집, 34, 291-305, 2003
  4. Kim T K, Choi B I, Hong H S, Choi B Y and Han J K. Improved imaging of hepatic metastases with delayed pulse inversion harmonic imaging using a contrast agent SH U 508A: preliminary study. Ultrasound in Medicine & Biology, 26 (9), 1439-1444. 2000 https://doi.org/10.1016/S0301-5629(00)00268-4
  5. Frinking P J A. Bouakaz A. Kirkhorn J, Cate F J T and Jong N. Ultrasound contrast imaging: current and new potential methods. Ultrasound in Medicine & Biology 26 (6), 65-975. 2000
  6. Shankar P M, Krishna P D and Newhouse V L. Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement. Ultrasound in Medicine & Biology, 24 (3), 395-399. 1998 https://doi.org/10.1016/S0301-5629(97)00262-7
  7. Shankar P M. Krishna P D and Newhouse V L. Subharmonic backscattering from ultrasound contrast agent. J. Acoust. Soc. Am., 106 (4, Pt. 1), 2104-2110. 1998 https://doi.org/10.1121/1.428142
  8. Akulichev V A. Pulsations of cavitation voids. In: L D Rozenberg Ed. High-Intensity Ultrasound Fields, Plenum: New York. 1971
  9. 최민주. Cavitation suppression effects by the modification of the spectral characteristics of high intensity focused ultrasound. 한국음향학회지. 18 (5), 68-77. 1999
  10. Rozenberg L D. Relationship of the pulsations of cavitation voids to the emission of cavitation noise and shock waves. In: Rozenberg L D Ed. High-Intensity Ultra- sonic Fields. Plenum: New York. 1971
  11. Ayme E J. Transient cavitation induced by high amplitude diagnostic ultrasound, PhD Thesis, University of Rochester, New York, USA. 1988
  12. Apfel R E and Holland C K. Gauging the likelihood of cavitation from short pulse low duty cycle diagnostic ultrasound. Ultrasound in Medicine & Biology, 17 (2), 179-185. 1991 https://doi.org/10.1016/0301-5629(91)90125-G
  13. Goldberg B B. Ultrasound Contrast Agent. Mosby: St Louis, USA. 1997
  14. Leighton T G. The acoustic bubble. Academic Press London. 1994
  15. Church C C. The effects of an elastic solid surface layer on the radial pulsation of gas bubbles. J Acoust. Soc. Am., 97 (3), 1510-1521.1995 https://doi.org/10.1121/1.412091
  16. Coleman A J, Choi M J and Saunders J E. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter. Ultrasound in Medicine & Biology, 17 (3), 245-25. 1991 https://doi.org/10.1016/0301-5629(91)90046-Y
  17. Choi M J, Kang G S, Paeng D K and Rhim S M. Magnitudes of the harmonic components emitted from ultrasonic contrast agent in response to a diagnostic ultrasound: experimental observation. Ultrasonics (in prep). 2004
  18. Choi M J. Exclusive ultrasonic probe for multi harmonic imaging (patent in prep). 2004