Nitrate Reduction without Ammonium Release using Fe-loaded Zeolite

  • Lee Seunghak (School of Civil, Urban & Geosystem Engineering, Seoul National University) ;
  • Lee Kwanghun (School of Civil, Urban & Geosystem Engineering, Seoul National University) ;
  • Lee Sungsu (School of Civil, Urban & Geosystem Engineering, Seoul National University) ;
  • Park Junboum (School of Civil, Urban & Geosystem Engineering, Seoul National University)
  • Published : 2005.02.01

Abstract

Nitrate reduction with zero valent iron $(Fe^0)$ has been extensively studied, but the proper treatment for ammonium byproduct has not been reported yet. In groundwater, however, ammonium is regarded as contaminant species, and particularly, its acceptable level is regulated to 0.5 mg-N/L. for drinking water. This study is focused on developing new material to reduce nitrate and properly remove ammonium by-products. A new material, Fe-loaded zeolite, is derived from zeolite modified by Fe(II) chloride followed by reduction with sodium borohydride. Batch experiments were performed without buffer at two different pH to evaluate the removal efficiency of Fe-loaded zeolite. After 80 hr reaction time, Fe loaded zeolite showed about $60\%$ nitrate removal at initial pH of 3.3 and $40\%$ at pH of 6 with no ammonium release. Although iron filing showed higher removal efficiency than Fe-loaded zeolite at each pH, it released a considerable amount of ammonium stoichiometrically equivalent to that of reduced nitrate. In terms of nitrogen species including $NO_3-N$ and $NH_4^+-N$, Fe-loaded zeolite removed about $60\%\;and\;40\%$ of nitrogen in residual solution at initial pH of 3.3 and 6, respectively, while the removal efficiency of iron filing was negligible.

영가 철을 이용한 질산성 질소 환원에 대한 연구는 지금까지 활발히 진행되어 왔지만, 이 반응에서 생성된 암모늄 부산물에 대한 적절한 처리과정은 아직 보고되지 않았다. 하지만, 암모늄은 먹는 물 수질기준에 의해 지하수 오염물로 분류되고 있어 (허용치 0.5 mg-N/L), 질산성 질소로 오염된 지하수 정화에 영가 철을 단독으로 사용하는 것에는 한계가 있다. 따라서, 본 연구의 목적은 질산성 질소를 환원함과 동시에 이 과정에서 발생하는 암모늄을 제거할 수 있는 반응물질을 개발하는데 있다. 본 연구에 사용한 Fe-loaded zeolite는, 제올라이트와 Fe(II) 용액을 교반시켜 제올라이트 구조 안으로 Fe(II)를 흡착유도하고, 이를 sodium borohydride로 환원하는 과정을 통해 제작되었다. Fe-loaded zeolite 제작에 사용된 Fe(II) 용액의 농도를 실험을 통해 산정하고, 이를 통해 Fe-loaded zeolite를 제작한 후, Fe-loaded zeolite의 질산성 질소 제거 성능을 확인하기 위해 두 가지 pH조건에서 회분식 실험을 수행하였다. 80시간의 반응을 통해 Fe-loaded zeolite는 초기 pH가 3.3인 경우 약 $60\%$의 질산성 질소를, pH가 6인 경우는 약 $40\%$의 질산성 질소를 제거하였고, 암모늄 부산물은 전혀 검출되지 않았다. 영가 철의 경우, 각 초기 pH조건에서 Fe-loaded zeolite보다 뛰어난 질산성 질소 제거성능을 보였지만, 반응 후 상당량의 암모늄 부산물을 생성하였다. 질산성 질소와 암모늄을 포함한 질소(-N)제거 효능의 관점에서 Fe-loaded zeolite의 경우 pH 3.3과 6의 경우에서 각각 $60\%$$40\%$의 제거효율을 보인 반면, 영가 철의 제거효율은 무시할만한 수준으로 나타났다.

Keywords

References

  1. Alowitz, M. J. and Scherer, M. M., 2002, Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal, Environ. Sci. Technol., 36(3), 299-306 https://doi.org/10.1021/es011000h
  2. Cheng, I. F., Muftikian, R., Fernando, Q., and Korte, N., 1997, Reduction of nitrate to ammonia by Zero-Valent Iron, Chemosphere, 35(11), 2689-2695 https://doi.org/10.1016/S0045-6535(97)00275-0
  3. Clifford, D. and Liu, X., 1993, Ion exchange for nitrate removal, J. Am. Water Works Assoc., 83(5), 48-55
  4. Gillham. R. W. and O'Hannesin, S. F., 1994, Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground Water, 32, 958-967 https://doi.org/10.1111/j.1745-6584.1994.tb00935.x
  5. Huang, C. P., Wang, H. W., and Chiu, P. C., 1998, Nitrate reduction by metallic iron, Wat. Res., 32(8), 2257-2264 https://doi.org/10.1016/S0043-1354(97)00464-8
  6. Huang, Y. H. and Zhang, T. C., 2002, Kinetics of nitrate reduction by iron at near neutral pH, J. Environ. Eng., 128(7), 604-611 https://doi.org/10.1061/(ASCE)0733-9372(2002)128:7(604)
  7. Kielemoes, J., Boever, P. D., and Verstraete, W., 2000, Influence of denitrification on the corrosion of iron and stainless steel powder, Environ. Sci. Technol., 34(4), 663-671 https://doi.org/10.1021/es9902930
  8. Li, L. Y. and Li, F. J., 2001, Heavy metal sorption and hydraulic conductivity studies using three types of bentonite admixes, J. Environ. Eng., 127(5), 420-429 https://doi.org/10.1061/(ASCE)0733-9372(2001)127:5(420)
  9. Liessens, J., Germonpre, R., Beemaert, S., and Vertraete, W., 1993, Removing nitrate with a methylotrophic fludized bed; technology and operating performance, J. Am. Water Works Assoc., 85(4), 144-154
  10. Till, B. A., Weathers, L. J., and Alvarez, P. J. J., 1998, Fe(0)-supported autotrophic denitrification, Environ. Sci. Technol., 32(5), 634-639 https://doi.org/10.1021/es9707769
  11. Westerhoff, P., 2003, Reduction of nitrate, bromate, and chlorate by zero valent iron ($Fe^0$), J. Environ. Eng., 129(1), 10-16 https://doi.org/10.1061/(ASCE)0733-9372(2003)129:1(10)
  12. Yabusaki, S., Cantrell, K., Sass, B., and Steefeel, C, 2001, Multicomponent reactive transport in an in situ zero-valent iron cell, Environ. Sci. Technol., 35(7), 1493-1503 https://doi.org/10.1021/es001209f