Enhanced PHB Accumulation in Photosystem- and Respiration-defective Mutants of a Cyanobacterium Synechocystis sp. PCC 6803

Synechocystis sp. PCC 6803의 에너지 대사 결함 돌연변이 균주에서의 Poly(3-hydroxybutyrate) 축적량 증진

  • Kim Soo-Youn (Department of Microbiology, Chungnam National University) ;
  • Choi Gang Guk (Department of Microbiology, Chungnam National University) ;
  • Park Youn Il (Department of Biology, Chungnam National University) ;
  • Park Young Mok (Biomolecular Research Team, Korea Basic Science Institute) ;
  • Yang Young Ki (Department of Genetic Engineering, Chosun University) ;
  • Rhee Young Ha (Department of Microbiology, Chungnam National University)
  • Published : 2005.03.01

Abstract

Photoautotrophic bacteria are promising candidates for the production of poly(3-hydroxybutyrate) (PHB) since they can address the critical problem of substrate costs. In this study, we isolated 25 Tn5-inserted mutants of the Synechocystis sp. PCC 6803 which showed enhanced PHB accumulation compared to the wild-type strain. After 5-days cultivation under nitrogen-limited mixotrophic conditions, the intracellular levels of PHB content in these mutants reached up to $10-30\%$ of dry cell weight (DCW) comparable to $4\%$ of DCW in the wild-type strain. Using the method of inverse PCR, the affected genes of the mutants were mapped on the completely known genome sequence of Synechocystis sp. PCC 6803. As a result, the increased PHB accumulation in 5 mutants were found to be resulted from defects of genes coding for NADH-ubiquinone oxidoreductase, O-succinylbenzoic-CoA ligase, photosystem II PsbT protein or histidine kinase, which are involved in photosystem in thylakoid inner membrane of the cell. The values of $NAD(P)H/NAD(P)^+$ ratio in the cells of these mutants were much higher than that of the wild-type strain as measured by using pulse-amplitude modulated fluorometer, suggesting that PHB synthesis could be enhanced by increasing the level of cellular NAD(P)H which is a limiting substrate for NADPH-dependent acetoacetyl-CoA reductase. From these results, it is likely that NAD(P)H would be a limiting factor for PHB synthesis in Synechocystis sp. PCC 6803.

본 연구에서는 남세균인 Synechocystis sp. PCC 6803 (Syn6803)을 대상으로 transposable element Tn5를 이용하여 획득된 1,200여 돌연변이주로부터 모균주에 비하여 PHB 축적량이 크게 증진된 균주를 선별하고, Tn5 삽입에 의해 결함을 나타낸 유전자를 확인함으로써 Syn6803에서의 PHB 생합성에 영향을 주는 세포내 생리학적 요인을 조사하고자 하였다. 모균주인 야생형 균주의 경우 질소원이 제한된 $BG11_0$ 배지에서의 PHB 생합성량이 건체량의 $4\%$ (w/w) 수준인데 반하여, $10-34\%$의 생합성량을 보이는 25개의 돌연변이 균주를 얻을 수 있었다. Inverse PCR을 이용하여, 선별된 돌연변이 균주내 돌연변이가 일어난 유전자를 조사한 결과, 아직까지 그 기능이 규명되지 않은 유전자가 대부분이었으나, NADH-ubiquinone oxidoreductase, O-succinylbenzoic-CoA ligase 또는 photosystem II PsbT protein과 같이 광합성과 호흡에 관여하는 유전자에 돌연변이가 일어난 4 균주와 histidine kinase가 결여된 1균주가 확인되었다. 이들 균주를 대상으로pulse-amplitude modulated fluorometer를 이용하여 세포내 $NAD(P)H/NAD(P)^+$비를 측정한 결과, 에너지 대사 흐름의 차단에 의해 세포내의 $NAD(P)HNAD(P)^+$비가 모균주에 비하여 현저하게 높은 것으로 나타났다. 이는 잉여의 전자로 포화된 세포, 즉 NAD(P)H에 의해 환원적 상태를 유지하고 있는 세포의 경우 PHB 축적 이 증진될 수 있음을 시사한다. 이러한 사실은 인위적으로 광합성과 호흡 관련 유전자가 제거되어 $NAD(P)H/NAD(P)^+$비가 높아진 것으로 알려진 다수의 Syn6803 돌연변이 균주들을 대상으로 PHB 생합성량을 조사한 결과로부터 재확인되었다.

Keywords

References

  1. 박연일. 1993. 배추 잎의 무기인산 결핍에 따른 틸라코이드막 전자전달능의 변화. 이학박사학위논문, 서울대학교, 대한민국
  2. Arifio, X. and J. Julio. 1995. Effect of sulfur starvation on the morphology and ultrastructure of the cyanobacterium Gloeocapsasp. PCC6909. Arch. Microbiol. 163, 447-453 https://doi.org/10.1007/BF00272134
  3. Braunegg, G., G. Lefebvre, and K.F. Genser. 1998. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol. 65, 127-161 https://doi.org/10.1016/S0168-1656(98)00126-6
  4. Hein, S., H. Tran, and A. Steinbüchel. 1998. Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch. Microbiol. 170, 162-170 https://doi.org/10.1007/s002030050629
  5. Howitt, C.A. and W.F.J. Vermass. 1998. Quinol and cytochrome oxidase in the cyanobacterium Synechocystis sp. PCC6803. Biochemistry 37, 17944-17951 https://doi.org/10.1021/bi981486n
  6. Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Sugiura, S. Sasamoto, T. Kimura, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, T. Wada, A. Watanabe, M. Tamda, M. Yauda, and S. Tabata. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109-136 https://doi.org/10.1093/dnares/3.3.109
  7. Kang, H.O., C.W. Chung, H.W. Kim, Y.B. Kim, and Y.H. Rhee. 2001. Cometabolic biosynthesis of copolyesters consisting of 3-hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates byPseudomonas sp. DSY-82. Antonie van Leeuwenhoek 80, 185-191 https://doi.org/10.1023/A:1012214029825
  8. Kim, G.J., Y.K. Yang, and Y.H. Rhee. 2001. Economic consideration of poly(3-hydroxybutyrate) production by fed-batch culture of Ralstonia eutropha KHB 8862. Kor. J. Microbiol. 37: 92-99
  9. Kim, Y.B., D.Y. Kim, and Y.H. Rhee. 1999. PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32, 6058-6064 https://doi.org/10.1021/ma982033t
  10.  Lee, I.Y., M.K. Kim, H.N. Chang, and Y.H. Park. 1995. Regulation of poly-$\beta$-hydroxybutyrate biosynthesis by nicotinamide nucleotide in Alcaligenes eutrophus. FEMS Microbiol. Lett. 131, 35-39
  11.  Lim, S.J., Y.M. Jung, H.D. Shin, and Y.H. Lee. 2002. Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J. Biosci. Bioeng. 93, 543-549 https://doi.org/10.1016/S1389-1723(02)80235-3
  12.  Lyu, J.Y. 2002. Cytochrome aa3 oxidase of the cyanobacterium Synechocystis sp. PCC6803 is a main terminal oxidase for the oxidation of reduced plastoquinone in the dark. M.Sc. thesis, Chungnam National University, Korea
  13.  Madison, L.L. and G.W. Huisman. 1999. Metabolic engineering of poly(3-hydorxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63, 21-53
  14.  Massimo, V., S. Claudio, M. Ricardo, and E. Alba. 1990. Occurrence of poly-$\beta$-hydorxybutyrate in Spirulina species. J. Bacteriol.172, 2791-2792 https://doi.org/10.1128/jb.172.5.2791-2792.1990
  15.  Ogawa, T. 1991. A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis sp. PCC6803. Proc. Natl. Acad. Sci. USA 88, 4275-4279
  16.  Rippka, R., J. Deruelles, J.B. Waterbury, M. Herdman, and R.J. Stanier. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 3, 1-61
  17.  Schmetterer, G. 1995. Genetic analysis of cyanbacteria, p. 409-435. In D.A. Bryant (ed), The molecular biology of cyanobacteria. Kluwer Academic Publishers, London
  18.  Schneider, D., S. Berry, P. Seidler, and M. Rogner. 2001. A regulatory role of the PetM subunit in a cyanobacteria cytochrome b6f complex. J. Biol. Chem. 76, 16780-16785
  19.  Steinbüchel, A. 2001. Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Micromol. Biosci. 1, 1-24 https://doi.org/10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-B
  20.  Taroncher-Oldenburg, G., K. Nishina, and G. Stephanopoulos. 2000. Identification and analysis the polyhydroxyalkanoate-specific $\beta$-ketothiolase and acetoacetyl coenzyme A reductase gene in the cyanobacterium Synechocystis sp. PCC6803. Appl. Environ. Microbiol. 66, 4440-4448 https://doi.org/10.1128/AEM.66.10.4440-4448.2000
  21. Wu, C.F., Q.Y. Wu, and Z.Y. Shen. 2001. Accumulation of poly-$\beta$-hydroxybutyrate in cyanobacterium Synechocystis sp. PCC6803. Bioresource Technol. 76, 85-90 https://doi.org/10.1016/S0960-8524(00)00099-7