DOI QR코드

DOI QR Code

Proton Conducting Behavior of a Novel Composite Based on Phosphosilicate/Poly(Vinyl Alcohol)

  • Huang, Sheng-Jian (Department of New Material and Engineering, Dankook University) ;
  • Lee, Hoi-Kwan (Department of New Material and Engineering, Dankook University) ;
  • Kang, Won-Ho (Department of New Material and Engineering, Dankook University)
  • Published : 2005.02.01

Abstract

A series of proton conductive composite membranes based on poly(vinyl alcohol) and phosphosilicate gels powders were successfully prepared. The proton conductivity of these composite was attributed to the phosphosilicate gel, which derived from tetraethoxysilane and phosphoric acid by sol-gel process at a molar ratio of P/Si = 1.5. The proton conductivity increased with increasing both the content of phosphosilicate gel and relative humidity. Temperature dependence of conductivity showed a Vogel-Tamman-Fulcher type behavior, indicating that proton was transferred through a liquidlike phase formed in micropores of phosphosilicate gel. The high conductivity of 0.065 S/cm with a membrane containing 60 wt$\%$ of the gel was obtained at $60^{\circ}C$ at $90\%$ relative humidity.

Keywords

References

  1. K. D. Kreuer, 'Proton Conductivity : Materials and Applications,' Chem. Mater., 8 610-41 (1996) https://doi.org/10.1021/cm950192a
  2. A. Walcarius, 'Electrochemical Applications of Silica-Based Organic-Inorganic Hybrid Materials,' Chem. Mater., 13 3351-72 (2001) https://doi.org/10.1021/cm0110167
  3. G. Alberti and M. Casciola, 'Solid State Protonic Conductors, Present Main Applications and Future Prospects,' Solid State Ionics, 145 3-16 (2001) https://doi.org/10.1016/S0167-2738(01)00911-0
  4. M. Nogami, Y. Tarutani, Y. Daiko, S. Izuhara, T. Nakao, and T. Kasuga, 'Preparation of $P_2O_5-SiO_2$ Glasses with Proton Conductivity of -100 mS/cm at Room Temperature,' J. Electrochem. Soc., 151 A2095 (2004) https://doi.org/10.1149/1.1817766
  5. M. Nogami, M. Suwa, and T. Kasuga, 'Proton Conductivity in Sol-Gel-Derived $P_2O_5-TiO_2-SiO_2$ Glasses,' Solid State Ionics, 166 3-43 (2004)
  6. A. Matsuda, T. Kanzaki, K. Tadanaga, M. Tatsumisago, and T. Minami, 'Medium Temperature Range Characterization as a Proton Conductor for Phosphosilicate Dry Gels Containing Large Amounts of Phosphorus,' Electrochimica Acta, 47 939-44 (2001) https://doi.org/10.1016/S0013-4686(01)00810-6
  7. H. Schmidt, 'New Type of Non-Crystalline Solids between Inorganic and Organic Materials,' J. Non-Cryst. Solids, 73 681-91 (1985) https://doi.org/10.1016/0022-3093(85)90388-6
  8. T. Hirotsu, K. Ichimura, K. Mizoguchi, and E. Nakamura, 'Water-Ethanol Permseparation by Pervaporation through Photocrosslinked Poly(Vinyl Alcohol) Composite Membranes,' J. Appl. Polym. Sci., 36 [8] 1717-29 (1988) https://doi.org/10.1002/app.1988.070360801
  9. Y. S. Kang, S. W. Lee, U. Y. Kim, and J. S. Shim, 'Pervaporation of Water-Ethanol Mixtures through Crosslinked and Surface-Modified Poly(Vinyl Alcohol) Membrane,' J. Membr. Sci., 51 215-26 (1990) https://doi.org/10.1016/S0376-7388(00)80904-7
  10. J. W. Rhim, S. W. Lee, and Y. K. Kim, 'Pervaporation Separation of Water-Ethanol Mixture Using Metal-Ion-Exchanged Poly(Vinyl Alcohol)(PVA)/Sulfosuccinic Acid(SSA) Membranes,' J. Appl. Ploymer. Sic., 85 1867 (2002) https://doi.org/10.1002/app.10735
  11. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, 'Preparation and Characterization of Crosslinked PVA/$SiO_2$ Hybrid Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Applications,' J. Membr. Sci., 240 37-48 (2004) https://doi.org/10.1016/j.memsci.2004.04.010
  12. B. S. Pivovar, Y. X. Wang, and E. L. Cussler, 'Pervaporation Membranes in Direct Methanol Fuel Cells,' J. Membr. Sci., 154 155-62 (1999) https://doi.org/10.1016/S0376-7388(98)00264-6
  13. R. Bouchet and E. Siebert, 'Proton Conduction in Acid Doped Polybenzimidazole,' Solid State Ionics, 118 287-99 (1999) https://doi.org/10.1016/S0167-2738(98)00466-4
  14. S. Petty-Weeks and A. J. Polak, 'Differential Scanning Calorimetry and Complex Admittance Analysis of PVA/$H_3PO_4$ Proton Conducting Polymer Blends,' Sensors and Actuators, 11 [4] 377-86 (1987) https://doi.org/10.1016/0250-6874(87)80077-X
  15. K. Hirata, A. Matsuda, T. Hirata, M. Tatsumisago, and T. Minami, 'Preparation and Characterization of Highly Proton-Conductive Composites Composed Phosphoric Acid-Doped Silica Gel and Styrene-Ethylene-Butylene-Styrene Elastomer,' J. Sol-Gel Sci. Tech., 17 61-69 (2000) https://doi.org/10.1023/A:1008713122220
  16. M. Krumova, D. Lopez, R. Benavente, C. Mijangos, and J. M. Perena, 'Effect of Crosslinking on the Mechanical and Thermal Properties of Poly(Vinyl Alcohol),' Polymer, 41 9265-72 (2000) https://doi.org/10.1016/S0032-3861(00)00287-1

Cited by

  1. Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications vol.13, pp.6, 2007, https://doi.org/10.1007/s11581-007-0130-y
  2. Characterization of poly(vinyl alcohol)/sodium bromide polymer electrolytes for electrochemical cell applications vol.108, pp.1, 2008, https://doi.org/10.1002/app.27566
  3. Structure, electrical and optical properties of (PVA/LiAsF6) polymer composite electrolyte films vol.50, pp.5, 2009, https://doi.org/10.1002/pen.21437