DOI QR코드

DOI QR Code

Electrical Properties of YSZ Electrolyte Film Prepared by Electron Beam PVD

EB-PVD법에 의해 제조된 YSZ 전해질의 전기적 특성

  • Shin, Tae-Ho (Department of Ceramic Engineering, Yonsei University) ;
  • Yu, Ji-Haeng (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Lee, Shiwoo (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Han, In-Sub (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Woo, Sang-Kuk (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Hyun, Sang-Hoon (Department of Ceramic Engineering, Yonsei University)
  • 신태호 (연세대학교 세라믹공학과) ;
  • 유지행 (한국에너지기술연구원 에너지재료연구센터) ;
  • 이시우 (한국에너지기술연구원 에너지재료연구센터) ;
  • 한인섭 (한국에너지기술연구원 에너지재료연구센터) ;
  • 우상국 (한국에너지기술연구원 에너지재료연구센터) ;
  • 현상훈 (연세대학교 세라믹공학과)
  • Published : 2005.02.01

Abstract

Electron Beam Physical Vapor Deposition (EB-PVD) is a typical technology for thermal barrier coating with Yttria Stabilized Zirconia (YSZ) on aero gas turbine engine. In this study EB-PVD method was used to fabricate dense YSZ film on NiO-YSZ as a electrolyte of Solid Oxide Fuel Cell (SOFC). Dense YSZ films of -10 $\mu$m thickness showed nano surface structure depending on deposition temperature. Electrical conductivities of YSZ film and electric power density of the single cell were evaluated after screen- printing $LaSrCoO_3$ as a cathode.

나노 코팅 기술로써 빠른 증착 속도와 미세구조 제어가 용이하여 항공기 엔진 부품 열차폐 코팅으로 널리 이용되는 Electron Beam Physical Vapor Deposition (EB-PVD)세라믹 코팅 기술을 연료전지 전해질 제조에 적용하였다. EB-PVD 법을 이용하여 NiO-YSZ 기판에 YSZ 전해질을 약 10$\mu$m의 두께로 짧은 시간에 코팅하였으며 증착온도에 따라 나노 구조의 표면을 가진 YSZ 막을 얻을 수 있었다. 연료전지 전해질로서의 특성을 평가하기 위하여, 같은 조건의 코팅으로 $Al_{2}O_3$기판에 전해질을 동일한 조건으로 코팅하여 전해질의 전기적 특성을 평가하였다. 또한 양극물질로서 $LaSrCoO_3$ 분말을 일반적인 스크린 프린팅 기법으로 코팅하여 EB-PVD의 코팅을 이용한 고체산화물 연료전지 제조 가능성에 대하여 논의하였다

Keywords

References

  1. B. A. Movchan, 'Functionally Graded EB-PVD Coating,' Surf. and Coat. Tech., 149 [2-3] 252-62 (2002) https://doi.org/10.1016/S0257-8972(01)01439-6
  2. B. Saruhan, P. Francois, K. Fritscher, and U. Schulz, 'EB-PVD Processing of Pyrochlorestructured $La_2Zr_2O_7$ Based TBCs,' Surf. and Coat. Tech., 182 [2-3] 175-83 (2004) https://doi.org/10.1016/j.surfcoat.2003.08.068
  3. Y. J. Leng, S. H. Chan, K. A. Khor, and S. P. Jiang, 'Performance Evaluation of Anode-Supported Solid Oxide Fuel Cells with Thin Film YSZ Electrolyte,' Int. J. of Hydrogen Energy, 29 [10] 1025-33 (2004) https://doi.org/10.1016/j.ijhydene.2004.01.009
  4. C. Wang, W. L. Worrell, S. Park, J. M. Vohs, and R. J. Gorte, 'Fabrication and Performance of Thin Film YSZ Solid Oxide Fuel Cells,' J. Elecrochem. Soc., 148 [8] A864-A68 (2001) https://doi.org/10.1149/1.1382588
  5. S. Y. Chun and N. Mizutani, 'The Transport Mechanism of YSZ Thin Films Prepared by MOCVD,' Appl. Surf. Sci., 171 [1-2] 82-8 (2001) https://doi.org/10.1016/S0169-4332(00)00543-2
  6. K. S. Lee, D. W. Seo, J. H. Yu, and S. K. Woo, 'A Study on the Improvement of Strength in NiO-YSZ Porous Anode Material for Solid Oxide Fuel Cell,' J. Kor. Ceram. Soc., 40 [3] 241-48 (2003) https://doi.org/10.4191/KCERS.2003.40.3.241
  7. S. Lee, S. Y. Lee, K. S. Lee, S. K. Woo, and D. K. Kim, 'Oxygen Permeation and Mechanical Properties of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ Membrane with Different Microstructures,' J. Kor. Ceram. Soc., 39 [3-4] 994-1000 (2002) https://doi.org/10.4191/KCERS.2002.39.10.994
  8. S. Lee, S. Y. Lee, K. S. Lee, K. W. Chung, D. K. Kim, and S. K. Woo, 'Oxygen Permeation and Syngas Production of $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ Oxygen Permeable Membrane,' J. Kor. Ceram. Soc., 40 [6] 594-600 (2003) https://doi.org/10.4191/KCERS.2003.40.6.594
  9. M. H. Li, X. F. Sun, S. K. Gong, Z. Y. Zhang, H. R. Guan, and Z. Q. Hu, 'Phase Transformation and Bond Coat Oxidation Behavior of EB-PVD Thermal Barrier Coating,' Surf. and Coat. Tech., 176 (2] 209-14 (2004) https://doi.org/10.1016/S0257-8972(03)00730-8
  10. K. Wada, N. Yamaguchi, and H. Matsubara, 'Crystallographic Texture Evolution in $ZrO_2-Y_2O_3$ Layers Produced by Electron Beam Physical Vapor Deposition,' Surf. and Coat. Tech., 184 [1] 55-62 (2004) https://doi.org/10.1016/j.surfcoat.2003.08.084