DOI QR코드

DOI QR Code

Microstructures and Mechanical Properties of Pressureless and Spark Plasma Sintered ZrO2(3 mol%Y2O3) Bodies

  • Shin, Na-Young (School of Advanced Materials Engineering, Kongju National University) ;
  • Han, Jae-Kil (School of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Hae-Hyoung (Department of Dental Biomaterials, School of Dentistry, Dankook University) ;
  • Lee, Byong-Taek (School of Advanced Materials Engineering, Kongju National University)
  • Published : 2005.02.01

Abstract

The microstructures and mechanical properties of Tetragonal Zirconia Polycrystals (TZP) sintered bodies, which made by pressureless and spark plasma sintering techniques, were investigated using XRD, SEM, and TEM techniques. In the spark plasma sintered samples, the TZP grains were equiaxed type including many sub-grain boundaries regardless of sintering conditions. The biaxial strength of TZP having an average of 80 nm grains in diameter was high in value with 1025 MPa, but fracture toughness showed a low value due to the absence of a fracture toughening mechanism such as transformation toughening. In the Pressureless Sintered (PLSed) samples, the grain size of TZP was strongly dependent on the sintering temperature; i.e., it gradually increased as the sintering temperature increased. The value of fracture toughness increased as the grain size increased by the stress-induced phase transformation and Borne crack deflection.

Keywords

References

  1. C. Fernandez, E. Verne, J. Vogel, and G. Carl, 'Optimisation of the Synthesis of Glass-Ceramic Matrix Biocomposites by the Response Surface Methodology,' J. Eur. Ceram. Soc., 23 [7] 1031-38 (2003) https://doi.org/10.1016/S0955-2219(02)00264-9
  2. A. Marti, 'Inert Bioceramics($Al_2O_3ZrO_2$) for Medical Application,' Int. J. Care Injured, 31 S-D33-36 (2000)
  3. V. Stanic, N. N. Aldini, and M. Fini, 'Osteointegration of Bioactive Glass-Coated Zirconia in Healthy Bone : An in vivo Evaluation,' Biomater, 23 [18] 3833-41 (2002) https://doi.org/10.1016/S0142-9612(02)00119-9
  4. R. Janda, J. Roulet, M. Wulf, and H. T:iller, 'A New Adhesive Technology for All-Ceramics,' Dent. Mater., 19 [6] 567-73 (2003) https://doi.org/10.1016/S0109-5641(02)00106-9
  5. C. Piconi, W. Burger, and H. Richter, 'Y-TZP Ceramics for Artificial Joint Replacements,' Biometer, 9 1489-94 (1998)
  6. P. Torricelli, E. Verne, and C. V. Brovarone, 'Biological Glass Coating on Ceramic Materials : In vitro Evaluation Using Primary Osteoblast Cultures from Healthy and Osteopenic Rat Bone,' Biomater, 22 [18] 2535-43 (2001) https://doi.org/10.1016/S0142-9612(00)00444-0
  7. L. Yin, S. Jahanmir, and L. K. Ives, 'Abrasive Machining of Porcelain and Zirconia with a Dental Handpiece,' Wear, 255 975-89 (2003) https://doi.org/10.1016/S0043-1648(03)00195-9
  8. C. Z. Huang, B. Zhang, and L. He, 'A Study on the Development of a Composite Ceramic Tool $ZrO_2$/(W,Ti)C and Its Cutting Performance,' J. Mater. Proc. Tech., 129 349-53 (2002) https://doi.org/10.1016/S0924-0136(02)00644-1
  9. T. Sornakumar, R. Krishnamurthy, and C. V. Gokularathnam, 'Machining Performance of Phase Transformation Toughened Alumina and Partially Stabilised Zirconia Composite Cutting Tools,' J. Eur. Ceram. Soc., 12 [6] 455-60 (1993) https://doi.org/10.1016/0955-2219(93)90079-7
  10. B. Smuk, M. Szutkowska, and J. Walter, 'Alumina Ceramics with Partially Stabilized Zirconia for Cutting Tools,' Mater. Proc. Tech., 133 195-98 (2003) https://doi.org/10.1016/S0924-0136(02)00232-7
  11. B. T. Lee, K. Hiraga, D. Shindo, and A. Nishiyama, 'Microstructure of Pressureless-Sintered $Al_2O_3-24$ Vol-Percent $ZrO_2$ Composite Studied by High-Resolution Electron-Microscopy,' J. Mater. Sci., 29 [4] 959-64 (1994) https://doi.org/10.1007/BF00351417
  12. B. T. Lee, A. Nishiyama, and K. Hiraga, 'Micro-Indentation Fracture Behavior of $Al_2O_3-24$ vol% $ZrO_2$, Composite Studied by High-Resolution Electron Microscopy,' Mater. Trans., JIM., 34 682-86 (1993) https://doi.org/10.2320/matertrans1989.34.682
  13. B. T. Lee and K. Hiraga, 'Crack-Propagation and Deformation-Behavior of $Al_2O_3-24$ vol-Percent $ZrO_2$ Composite Studied by Transmission Electron-Microscopy,' J. Mater. Res., 9 [5] 1199-207 (1994) https://doi.org/10.1557/JMR.1994.1199
  14. B. T. Lee and K. Hiraga, 'Stress-Induced Phase Transformation of $ZrO_2$ in $ZrO_2$ (3 mol%$Y_2O_3$)-25 vol%$Al_2O_3$ Composite Studied by Transmission Electron Microscopy,' Scrip. Mater., 38 [7] 1101-07 (1998) https://doi.org/10.1016/S1359-6462(98)00003-7
  15. B. T. Lee, T. Koyama, A. Nishiyama, and K. Hiraga, 'Microstructure and Fracture Characteristic of $Si_3N_4-ZrO_2$(MgO) Ceramic Composite Studied by Transmission Electron Microscopy,' Scrip. Meta. et Mater., 32 [7] 1073-77 (1995) https://doi.org/10.1016/0956-716X(95)00077-9
  16. P. F. Becher and M. V. Swain, 'Grain-Size-Dependent Transformation Behavior in Polycrystalline Tetragonal Zirconia,' J. Am. Ceram. Soc., 75 [3] 493-97 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb07832.x
  17. X. J. Chen, K. A. Chan, S. H. Chan, and L. G. Yu, 'Preparation Yttria-Stabilized Zirconia Electrolyte by Spark-Plasma Sintering,' Mater. Sci. and Eng. A, 341 43-9 (2003)
  18. M. Nygren and Z. Shen, 'On the Preparation of Bio-, Nano-, and Structural Ceramics and Composites by Spark Plasma Sintering,' Sol. Stat. Sci., 5 [1] 125-31 (2003) https://doi.org/10.1016/S1293-2558(02)00086-9
  19. J. Lu, L. Gao, and J. Sun, 'Effect of Nickel Content on the Sintering Behavior, Mechanical, and Dielectric Properties of $Al_2O_3/Ni$ Composites from Coated Powders,' Mater. Sci. Eng. A, 293 223-28 (2000) https://doi.org/10.1016/S0921-5093(00)01231-4
  20. K. A. Khor, L. G. Yu, S. H. Chan, and X. J. Chen, 'Densification of Plasma Sprayed YSZ Electrolytes by Spark Plasma Sintering (SPS),' J. Am. Ceram. Soc., 23 1855-63 (2003) https://doi.org/10.1016/S0955-2219(02)00421-1