DOI QR코드

DOI QR Code

Variation of Yield and Oxygen Content of SiC-Based Ceramics with the Conversion Processes of PCS

PCS의 전환공정에 따른 SiC세라믹스 수율 및 산소 함량 변화

  • Kim, Joung-Il (Nuclear Materials Technology and Development, Korea Atomic Energy Research Institute) ;
  • Kim, Weon-Ju (Nuclear Materials Technology and Development, Korea Atomic Energy Research Institute) ;
  • Park, Ji-Yeon (Nuclear Materials Technology and Development, Korea Atomic Energy Research Institute)
  • 김정일 (한국원자력연구소 원자력재료기술개발부) ;
  • 김원주 (한국원자력연구소 원자력재료기술개발부) ;
  • 박지연 (한국원자력연구소 원자력재료기술개발부)
  • Published : 2005.03.01

Abstract

The conversions to SiC-based ceramics of a polycarbosilane (PCS) with and without oxidation curing were carried out. A yield and an oxygen content of conversed SiC-based ceramics were evaluated. The weight losses of conversed SiC-based ceramics by both processes analyzed to estimate the high temperature stability after heat treatment at high temperature in vacuum. The yield of SiC­based ceramics after oxidation curing was higher than that without curing process. However, the weight loss of SiC-based ceramics with oxidation curing was larger than that without curing process after heat treatment.

무기 고분자인 polycarbosilane(PCS)으로부터 탄화규소 (SiC) 세라믹스로의 전환을 열산화에 의한 불융화 처리를 한 후 열분해 하는 공정과 불응화 처리를 하지 않고 열분해 하는 두 공정으로 각각 행하고, 수율 및 산소 함량을 비교하였다. 또한 두 공정으로 얻어진 SiC 세라믹스의 고온 안정성 평가를 위해 진공분위기의 고온에서 열처리 하여 무게 감량을 비교하였다. 열산화에 의한 불융화 처리를 한 후 열분해 하여 얻어진 SiC 세라믹스의 수율이 불융화 처리를 하지 않고 열분해 하여 얻어진 SiC세라믹스의 수율보다 높게 나타났으나, 이를 고온의 진공분위기에서 열처리 하였을 때는 열산화에 의해 불융화 처리를 한 공정으로부터 얻어진 SiC 세라믹스의 무게 감량이 크게 나타났다.

Keywords

References

  1. K. Yamada and M. Mohri, 'Properties and Applications of Silicon Carbide Ceramics'; pp. 13-44 in Silicon Carbide Ceramics-1 Fundamental and Solid Reaction. Ed. by S. Somiya, Y. Inomata, Elsevier applied science, London and New York, 1991
  2. K. Sato, A. Tezuka, O. Funayama, T. Isoda, Y. Terada, S. Kato, and M. Iwasa, 'Fabrication and Pressure Testing of a Gas-Turbine Component Manufactured by a Preceramic-Polymer-Impregnation Method,' Comp. Sci. Tech., 59 853-59 (1999) https://doi.org/10.1016/S0266-3538(99)00015-9
  3. R. E. Tressler, 'Recent Development in Fibers and Interphases for High Temperature Ceramic Matrix Composites,' Composites: Part A, 30 429-37 (1999) https://doi.org/10.1016/S1359-835X(98)00131-6
  4. L. L. Snead, R. Jones, A. Kohyama, and P. Fenici, 'Status of Silicon Carbide Composites for Fusion,' J. Nucl. Mater., 233-7 1-1692 (1996)
  5. T. Seguchi, N. Kasai, and K. Okamura, 'Preparation of Heat-Resistant Silicon Carbide Fiber From Polycarbosilane Fiber Cured by Electron Beam Irradiation,' in: Proceedings of the International Conference on Evolution in Beam Applicaions, pp. 702-06 (1991)
  6. M. Kotani, T. Inoue, A. Kohyam, K. Okamura, and Y. Katoh, 'Consolidation of Polymer-Derived SiC Matrix Composites : Processing and Microstructure,' Comp. Sci. Tech., 62 2179-88 (2002) https://doi.org/10.1016/S0266-3538(02)00151-3
  7. M. Sugimoto, Y. Morita, T. Seguchi, and K. Okamura, 'Development of SiC Fiber-Reinforced SiC Composites by Radiation-Cured Preceramic Polymer,' Key Eng. Mater., 164-65 11-4 (1999) https://doi.org/10.4028/www.scientific.net/KEM.164-165.11
  8. S. Matthews, M. J. Edirisinghe, and M. J. Folkes, 'Effect of Pre-Pyrolysis Heat Treatment on the Preparation of Silicon Carbide from a Polycarbosilane Precursor,' Ceram. Inter., 25 49-60 (1999) https://doi.org/10.1016/S0272-8842(97)00088-6
  9. J. C. Pivin and P. Colombo, 'Conversion of Organic-Inorganic Polymers to Ceramics by Ion Implantation,' Nucl. Instr. and Meth. B, 120 262-65 (1996) https://doi.org/10.1016/S0168-583X(96)00522-8
  10. K. Kakimoto, F. Wakai, J. Bill, and F. Aldinger, 'Synthesis of Si-C-O Bulk Ceramics with Various Chemical Compositions from Polycarbosilane,' J. Am. Ceram. Soc., 82 [9] 2337-41 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02088.x
  11. H. Q. Ly, R. Taylor, R. J. Day, and F. Heatley, 'Conversion of Polycarbosilane (PCS) to SiC-Based Ceramic Part 1. Characterization of PCS and Curing Products,' J. Mater. Sci., 36 4037-43 (2001) https://doi.org/10.1023/A:1017942826657
  12. H. Q. Ly, R. Taylor, R. J. Day, and F. Heatley, 'Conversion of Polycarbosilane (PCS) to SiC-Based Ceramic Part II. Characterisation of PCS and Curing Products,' J. Mater. Sci., 36 4045-57 (2001) https://doi.org/10.1023/A:1017994810727
  13. Y. Hasegawa, 'Synthesis of Continuous Silicon Carbide Fibre Part6 Pyrolysis Process of Cured Polycarbosilane Fibre and Structure of SiC Fibre,' J. Mater. Sci., 24 1177-90 (1989) https://doi.org/10.1007/BF02397045
  14. A. Singh, 'Radiation Processing of Carbon Fibre-Reinforced Advanced Composites,' Nucl. Instr. and Meth. B, 185 50-4 (2001) https://doi.org/10.1016/S0168-583X(01)00753-4
  15. M. Takeda, Y. Imai, H. Ichikawa, N. Kasai, T. Seguchi, and K. Okamura, 'Thermal Stability of SiC Fiber Prepared by an Irradiation Curing Process,' Comp. Sci. Tech., 59 793-99 (1999) https://doi.org/10.1016/S0266-3538(99)00010-X

Cited by

  1. /SiC Composites Depending on the Polycarbosilane Precursor and Solvent vol.24, pp.9, 2014, https://doi.org/10.3740/MRSK.2014.24.9.474