The Behavior of the Mobility Degradation in Pocket Implanted MOSFETS

Halo 구조의 MOSFET에서 이동도 감소 현상

  • Lee Byung-Heon (School of Electrical Engineering Chungbuk National University) ;
  • Lee Kie-Young (School of Electrical and Computer Engineering Chungbuk National University)
  • 이병헌 (충북대학교 대학원 전자공학과) ;
  • 이기영 (충북대학교 전기전자컴퓨터공학부)
  • Published : 2005.04.01

Abstract

The increased effective impurity due to the pocket ion implantation is well blown to give rise to a reduction of the effective mobility of halo MOSFETs. However, further decrease of the effective mobility can be observed in pocket implanted MOSFETs above the mobility reduction due to the Coulomb impurity scattering and the gate bias dependency of the effective mobility can also differ from the simple model describing the mobility behavior in terms of the effective impurity. Phonon scattering and surface scattering as well as impurity Coulomb scattering are also shown to be effective in the degradation of the carrier mobility of pocket implanted MOSFETs. Using the 1-D regional approximation the effect of the distribution of the inversion charge density along the channel on the drain current is investigated. The inhomogeneous channel charge distribution due to pocket implantation is also shown to contribute to the further reduction of the effective mobility in halo MOSFETs.

소오스와 드레인 근처에 포켓이온이 주입된 halo구조의 MOSFET에서 전송자의 이동도 감소는 포켓이온주입의 조건에 따라 이온화된 불순물의 증가에 따른 쿨롱(Coulomb) 산란율의 증가에 의한 이동도의 감소량보다 큰 이동도의 감소가 관측될 수 있다. 게이트 바이어스에 대한 이동도의 특성변화도 기존의 일차적인 쿨롱산란의 증가효과에 의한 해석과 비교하여 상이한 결과가 나타날 수 있음이 실험적으로 확인되고 있다. 본 연구에서는 포켓이온 주입에 의하여 쿨롱산란원이 되는 유효불순물 농도의 증가에 따른 일차적인 이동도의 감소효과를 벗어난 이동도 특성을 분석하여 이동도의 감소현상을 일반적으로 설명할 수 있는 개선된 해석적 모델을 제시하였다. 해석적인 결과를 도출하기 위하여 일차원 영역구분의 근사방법을 적용한 결과, 포켓이온 주입에 의하여 포논산란율 및 표면산란율(surface roughness scattering rate)의 증가도 이동도감소에 기여함이 보여 졌다. 채널의 전송자분포가 드레인 전류에 영향을 미치게 되므로 포켓이온에 의해 유발된 전송자분포의 효과를 분석하여 유효이동도가 추가적으로 감소함을 확인하였다.

Keywords

References

  1. B. Yu, C. H. Wann, E. D. Nowak, K. Noda, and C. Hu, 'Short Channel Effect Improved by Lateral Channel Engineering in Deep-Submicronmeter MOSFETs,' IEEE Trans. on Elec. Dev., TED44, pp. 627-633, 1997
  2. R. Gwoziecki, T. Skotnicki, P. Bouillon, and P. Gentil, 'Optimization of Vth Roll-off in MOSFETs with Advanced Channel Architecture -Retrograde Doping and Pockets,' IEEE Trans. on Elec. Dev., TED 46, pp. 1551-1561, 1999
  3. N. Miura, Y. Abe, K Sugihara, T. Oishi, T. Furukawa, T. Nakahata, K Shiozawa, S. Maruno, and Y. Tokuda, 'Junction Capacitance Reduction due to Self-Aligned Pocket Implantation in Elevated Source/Drain NMOSFETs,' IEEE Trans. on Elec. Dev., TED 48, pp. 1969-1974, 2001 https://doi.org/10.1109/16.944184
  4. R. Rios, W-K. Shih, A. Shah, S. Mudanai, P. Packan, T. Sandford, and K. Mistry, 'A ThreeTransistor Threshold Voltage Model for Halo Processes,' IEDM Tech. Dig., pp. 113-116, 2002
  5. Hoewoo Koo, Kieyoung Lee, Kyungho Lee, T. A. Fjeldly, and M. S. Shur, 'Analysis of the Anomalous Drain Current Characteristics of Halo MOSFETs,' Solid State Electron., 47, pp 99-100, 2003 https://doi.org/10.1016/S0038-1101(02)00268-X
  6. K. M. Cao, W. Liu, X. Jin, K. Green, J. Krick, T. Vrotsos, and C. Hu, 'Modeling of Pocket Implanted MOSFETs for Anomalous Analog Behavior,' IEDM Tech. Dig. pp 171-174, 1999
  7. P. Klein and S. Chladek, ' A New Mobility Moel for Pocket Implanted Quarter Micron n-MOSFETs and Below,' Electronics, Circuits and Systems, 2001. ICECS 2001, pp. 1587-1590, 2001
  8. F. Babarada, M. D. Profirescu, A. Rusu, 'MOSFET Mobility Degradation Modeling,' Semiconductor Conf. CAS 2003, pp. 301-304, 2003
  9. C. Yue, V. M. Agostinelli, Jr., G. M. Yeric, AI F. Tasch, 'Improved Universal MOSFET Electron Mobility Degradation Models for Circuit Simulation,' IEEE Trans. Computer-Aided Design, 12, pp. 1542-1546, 1993 https://doi.org/10.1109/43.256929
  10. S. Villa, A. L. Lacaita, L. M. Perron, and R. Bez, 'A Physically-Based Model of the Effective Mobility in Heavily-Doped n-MOSFET's,' IEEE Trans. on Elec. Dev., TED 45, pp. 110-115, 1998
  11. F. Gamiz, J. A. Lopez-Villanueva, J. Banqueri, and J. e. Carceller, 'Influence of the Oxide-Charge Distribution Profile on Electron Mobility in MOSFET's,' IEEE Trans. on Elec. Dev., ED-42, pp. 999-1004, 1995 https://doi.org/10.1109/16.381999
  12. W. Liu, MOSFET Models for SPICE Simulation including BSIM3v3 and BSIM4, John Wiley & Sons, 2001
  13. K. Romanjek, F. Andrieu, T. Ernst, and G. Ghibaudo, 'Improved Split C-V Method for Effective Mobility Extraction in Sub-0.1-um Si MOSFETs,' IEEE Electron Device Lett., vol. 25, pp. 583-585, 2004 https://doi.org/10.1109/LED.2004.832786
  14. Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd Edns., McGraw-Hill, p. 184, 1999
  15. Y. Taur and T. H. Ning, Fundamentals of Modem VLSI Devices, Cambridge Univ., 1998
  16. R. S. Muller and T. I. Karmins with M. Chan, Device Electronics for Integrated Circuits, 3rd Edns., John Wiely & Sons, p. 454, 2003