DOI QR코드

DOI QR Code

Ginseng and ion channels: Are ginsenosides, active component of Panax ginseng, differential modulator of ion channels?

  • Jeong, Sang-Min (Research Laboratory for the Study of Ginseng Signal Transduction and Dept. of Physiology, College of Veterinary Medicine, Konkuk University) ;
  • Nah, Seung-Yeol (Research Laboratory for the Study of Ginseng Signal Transduction and Dept. of Physiology, College of Veterinary Medicine, Konkuk University)
  • Published : 2005.03.01

Abstract

The last two decades have shown a marked expansion in publications of diverse effects of Panax ginseng. Ginsenosides, as active ingredients of Panax ginseng, are saponins found in only ginseng. Recently, a line of evidences shows that ginsenosides regulate various types of ion channel activity such as $Ca^{2+},\;K^+,\;Na^+,\;Cl^-$, or ligand gated ion channels (i.e. $5-HT_3$, nicotinic acetylcholine, or NMDA receptor) in neuronal, non-neuronal cells, and heterologously expressed cells. Ginsenosides inhibit voltage-dependent $Ca^{2+},\;K^+,\;and\;Na^+$ channels, whereas ginsenosides activate $Ca^{2+}-activated\;Cl^-\;and\;Ca^{2+}-activated\;K^+$ channels. Ginsenosides also inhibit excitatory ligand-gated ion channels such as $5-HT_3$, nicotinic acetylcholine, and NMDA receptors. This review will introduce recent findings on the ginsenoside-induced differential regulations of ion channel activities and will further expand the possibilities how these ginsenoside-induced ion channel regulations are coupled to biological effects of Panax ginseng.

Keywords

References

  1. Tyler, V. E. : Herbal remedies. J Pharm Technol 11, 214-220 (1995) https://doi.org/10.1177/875512259501100510
  2. Nah, S. Y. : Ginseng; Recent advances and Trends. J. Ginseng Res. 21, 1-12 (1997)
  3. Nah, S. Y., Park, H. J. and McCleskey, E.W. : A trace component of ginseng that inhibit $Ca^{2+}$ channels through a pertussis toxin-sensitive G protein. Proc Natl Acad Sci USA 92, 8739-8743 (1995)
  4. Choi, S., Kim, H. J., Ko, Y. S., Jeong, S. W., Kim, Y. I., Simonds, W. E, Oh, j. W. and Nab, S. Y. :$G{\alpha}_{q/11}$ coupled to mammalian PLC$\beta$3-like enzyme mediates the ginsenoside effect on $Ca^{2+}$ -activated CJ current in the Xenopus oocyte. J. Biol. Chem. 276, 48797-48802 (2001) https://doi.org/10.1074/jbc.M104346200
  5. Rhim, H., Kim, H., Lee, D. Y., Oh, T. H. and Nab, S. Y. : Ginseng and ginsenoside $Rg_3$, a newly identified active ingredient of ginseng, modulate $Ca^{2+}$ channel currents in rat sensory neurons. Eur. J. Pharmacol. 436, 151-158 (2002) https://doi.org/10.1016/S0014-2999(01)01613-2
  6. Miller, R. J. : Rocking and rolling with $Ca^{2+}$ channels. Trends in Neurosci. 24, 445-449 (2001) https://doi.org/10.1016/S0166-2236(00)01859-2
  7. Nah, S.Y. and McCleskey, E. W. : Ginseng root extract inhibits calcium channels in rat sensory neurons through a similar path, but different receptor, as m-type opioids. J Ethnopharmacol 42, 45-51 (1994) https://doi.org/10.1016/0378-8741(94)90022-1
  8. Kim, H. S., Lee, J. H., Koo, Y. S. and Nab, S. Y. : Effects of ginsenosides on $Ca^{2+}$ channels and membrane capacitance in rat adrenal chromaffin cells. Brain Res Bull. 46, 245-251 (1998) https://doi.org/10.1016/S0361-9230(98)00014-8
  9. Choi, S., Jung, S. Y., Kim, C. H., Kim, H. S., Rhim, H., Kim, S. C. and Nah, S. Y. : Effect of ginsenosides on voltagedependent $Ca^{2+}$ channel subtypes in bovine chromaffin cells. J. Ethnopharmacol. 74, 75-81 (2001) https://doi.org/10.1016/S0378-8741(00)00353-6
  10. Wickman, K. D. and Clapham, D. E. : G-protein regulation of ion channels. Current Opinion in Neurobiology 5, 278-285 (1995) https://doi.org/10.1016/0959-4388(95)80039-5
  11. Kim, N. K., Kang, S. Y., Park, J. H. and Schini-Kerth, V. B. : Ginsenoside $Rg_3$ mediates endothelium-dependent relaxation in response to ginsenosides in rat aorta: role of $K^+$ channels. Eur. J. Pharmacol. 367, 41-49 (1999) https://doi.org/10.1016/S0014-2999(98)00898-X
  12. Chung, I. and Kim, N. D. : Ginseng saponins enhance maxi $Ca^{2+}$ -activated $K^+$ currents of the rabbit coronary artery smooth muscle cells. J. Ginseng Res. 23, 230-234 (1999)
  13. Chung, I. and Lee, J. S. : Ginsenoside $Rg_3$ increases the ATPsensitive $K^+$ channel activity in the smooth muscle of the rabbit coronary artery. J. Ginseng Res. 23, 235-238 (1999)
  14. Li, Z., Chen, X., Niwa, Y., Sakamoto, S. and Nakaya, Y. : Involvement of $Ca^{2+}$-activated $K^+$ channels in ginsenosidesinduced aortic relaxation in rats. J.Cardiovasc. Pharmacol. 37,41-47 (2001) https://doi.org/10.1097/00005344-200101000-00005
  15. Dascal, N. : Signaling via the G prorein-activated $K^+$ channels. Cell Signal. 9,551-573 (1997) https://doi.org/10.1016/S0898-6568(97)00095-8
  16. Choi, S., Jung, S. Y., Ko, Y. S., Koh, S. R., Rhim, H. and Nah, S. Y. : Functional Expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus oocytes. Mol. Pharmacol. 61, 928-935 (2002) https://doi.org/10.1124/mol.61.4.928
  17. Jeong, S. M., Lee, J. H., Kim, J. H., Lee, B. H., Yoon, I. S., Lee, J. H., Kim, D. H., Rhim, H., Kim, Y. and Nah, S. Y. : Stereospecificity of ginsenoside $Rg_3$ action on ion channels. Mol. Cells 18, 383-389 (2004)
  18. Liu, D., Li., B., Liu, Y, Attele, A.S., Kyle, J. W. and Yuan, C. S. : Voltage-dependent inhibition of brain $Na^+$ channels by American ginseng. Eur. J. Pharmacol. 413, 47-54 (2001) https://doi.org/10.1016/S0014-2999(01)00735-X
  19. Lindstrom, J. : Nicotinic acetylcholine receptors. p153-175. In: North, A (ed), CRC Handbook of Receptors. CRC Press, Florida (1995)
  20. Sargent, P. B. : The diversity of neuronal nicotinic acetylcholine receptor. Ann. Rev. Neurosci. 16,403-443 (1993) https://doi.org/10.1146/annurev.ne.16.030193.002155
  21. Tachikawa, E., Kudo, T., Kashimoto, T. and Takashshi, E. : Ginseng saponins reduce acetylcholine-evoked $Na^+$ influx and catecholamine secretion in bovine adrenal chromaffin cells. J Pharmacol Exp Ther. 273, 629-636 (1995)
  22. Campos-Caro, A., Smillie, E. I., Del Toro, E. D., Rovira, J. C., Vicente-Agullo, E., Chapuli, J., Juiz, J. M., Sala, S., Sala, E., Ballesta, J. and Criado, M.: Neuronal nicotinic acetylcholine receptors on bovine chromaffin cells: cloning, expression, and genomic organization of receptor subunits. J. Neurochem. 68,488-497 (1997) https://doi.org/10.1046/j.1471-4159.1997.68020488.x
  23. Choi, S., Jung, S. Y, Lee, J. H., Sala, E., Criado, M., Mulet, J., Valor L. M., Sala, S., Engel, A. G. and Nah, S. Y.: Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 442, 37-45 (2002) https://doi.org/10.1016/S0014-2999(02)01508-X
  24. Sala, F., Mulet, J., Choi, S., Jung, S. Y., Nah, S. Y., Rhim, H., Valor, L. M., Criado, M. and Sala, S. : Effects of ginsenoside $Rg_2$ on human neurona nicotinic acetylcholine receptors. J. Pharm. Exp. Ther. 301, 1052-1059 (2002) https://doi.org/10.1124/jpet.301.3.1052
  25. Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. and Julius, D. : Primary structure and functional expression of the 5-$HT_3$ receptor, a serotonin-gated ion channel. Science, 254, 432-437 (1991) https://doi.org/10.1126/science.1718042
  26. Choi, S., Lee, J. H., Oh, S., Rhim, H., Lee, S. M. and Nah, S. Y. : Effects of ginsenoside $Rg_2$ on the 5-$HT_3$ receptor-mediated ion current in Xenopus oocytes. Mol. Cells 15, 108-113 (2003)
  27. Lee, B. H., Jeong, S. M., Lee, J. H., Kim, D. H., Kim, J. H., Kim, J. I., Shin, H. C, Lee, S. M. and Nah, S. Y : Differential effect of ginsenoside metabolites on the 5-$HT_{3A}$ receptor-mediated ion current in Xenopus oocytes. Mol. Cells 17, 51-56 (2004)
  28. Dingledine, R., Borges, K., Bowie, D. and Traynelis, S. E : Glutamate receptor ion channels. Pharmacol. Rev. 51, 7-62 (1999)
  29. Kim, Y. C, Kim, S. R., Markelonis, G. J. and Oh, T. H. : Ginsenosides $Rb_1$and $Rg_3$ protect cultured rat cortical cells from glutamate-induced neurodegeranation. J. Neurosci. Res.53.426-432 (1998) https://doi.org/10.1002/(SICI)1097-4547(19980815)53:4<426::AID-JNR4>3.0.CO;2-8
  30. Seong, Y. H., Shin, C S., Kim, H. S. and Baba, A. : Inhibitory effect of ginseng total saponins on glutamate-induced swelling of cultured atrocytes. Biol. Pharm.Bull. 18, 1776-1778 (1995) https://doi.org/10.1248/bpb.18.1776
  31. Abe, K., Cho, S. I., Kitagawa, I., Nishiyama, N. and Saito, H. : Differential effects of ginsenoside $Rb_1$ and malonylginsenoside $Rb_1$ on long-term potentiation in the dentate gyrus of rats. Brain Res. 649, 7-11 (1994) https://doi.org/10.1016/0006-8993(94)91042-1
  32. Yoon, S. R., Nah, J. J., Shin, Y. H., Kim, S. K., Nam, K. Y., Choi, H. S. and Nah, S. Y. : Ginsenosides induce differential antinocicepion and inhibit substance P induced-nociceptive response in mice. Life Sci. 62, PL319-PL325 (1998)
  33. Nah, J. J., Choi, S., Kim, Y. H., Kim, S. C, Nam, K. Y., Kim, J. K. and Nah, S. Y. : Effect of spinally administered ginseng total saponin on capsaicin-induced pain and excitatory amino acid-induced nociceptive responses. J. Ginseng Res. 23, 38-43 (1999)
  34. Lee, J. H., Kim, S. H., Kim, D., Hong, H. N. and Nah, S. Y. : Protective effect of ginsenosides, active ingredients of Panax ginseng, on kainate-induced neurotoxicity in rat hippocam- pus. Neurosci. Lett. 325, 129-133 (2001) https://doi.org/10.1016/S0304-3940(02)00256-2
  35. Kim, S., Ahn, K., Oh, T. H., Nah, S. Y. and Rhim, H. : Inhibitory effect of ginsenosides on NMDA receptor-mediated signals in rat hippocampal neurons. Biochem Biophys Res Commun. 296, 247-254 (2002) https://doi.org/10.1016/S0006-291X(02)00870-7
  36. Shin, E. K., Park, H. W., Kim, S. C. and Jung, N. P. : The effect of ginseng components on the signal transduction in the activation of murine macrophages. Kor J Ginseng Sci 20, 159-167 (1996)
  37. Hong, H.Y., Yoo, G. S. and Choi, J. K. : Effects of ginsenosides on pp60c- sre kinase, intracellular calcium and cell proliferation in NIH 3T3 cells. J Ginseng Res 22, 126-132 (1998)
  38. Choi, S., Rho, S. H., Jung, S. Y., Kim, S. C., Park, C. S. and Nah, S. Y. : A novel activation of $Ca^{2+}$-activated $CI^-$ channel in Xenopus oocytes by ginseng saponins: evidence for the involvement of phospholipase C and intracellular $Ca^{2+}$ mobilization. British J. Pharmacol. 132, 641-648 (2001) https://doi.org/10.1038/sj.bjp.0703856
  39. Jeong, S. M., Lee, J. H., Kim, S., Rhim, H., Lee, R.H., Kim, J. H., Oh, J. W., Lee, S. M. and Nah, S. Y. : Ginseng saponins induce store-operated calcium entry in Xenopus oocytes. Br. J. Pharmacol. 142, 585-593 (2004) https://doi.org/10.1038/sj.bjp.0705797
  40. Berridge, M. J., Bootman, M. D. and Lipp, P. : Calcium - a life and death signal. Nature, 395, 645-668 (1998) https://doi.org/10.1038/27094