Characteristics of Developmental Stages in Bacterial Biofilm Formation

세균 생물막 형성의 단계별 특징

  • Kim Chang-Beom (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Rho Jong-Bok (Department of Environmental Science, Hankuk University of Foreign Studies) ;
  • Lee Hyun-Kyung (Division of Biological Science, Chungbuk National University) ;
  • Choi Sang Ho (Department of Food Science and Technology, Seoul National University) ;
  • Lee Dong-Hun (Division of Biological Science, Chungbuk National University) ;
  • Park Soon-Jung (Department of Parasitology, Yonsei University) ;
  • Lee Kyu-Ho (Department of Environmental Science, Hankuk University of Foreign Studies)
  • 김창범 (한국외국어대학교 환경학과) ;
  • 노종복 (한국외국어대학교 환경학과) ;
  • 이현경 (충북대학교 생명과학부) ;
  • 최상호 (서울대학교 식품공학과) ;
  • 이동훈 (충북대학교 생명과학부) ;
  • 박순정 (연세대학교 의과대학 기생충학교실) ;
  • 이규호 (한국외국어대학교 환경학과)
  • Published : 2005.03.01

Abstract

Since Anton van Leeuwen­hoek first observed a surface-associated multicellular structure of bacterial cells in the 17th century, it has been shown to exhibit an ability to form a biofilm by numerous bacterial species. The biofilm formation is composed of distinct developmental stages, which include an attachment/adhesion of a single cell, a proliferation toward monolayered coverage, a propagation to aggregated microcolony, a maturation to 3-dimensional structure, and subsequently a local degradation. Investigation to identify the essential factors for bacterial biofilm formation has been performed via classical genetic approaches as well as recently developed technologies. The initial stage requires bacterial motility provided by a flagellum, and outermembrane components for surface signal interaction. Type IV-pilus and autoaggregation factors, e.g., type I-fimbriae or Ag43, are necessary to reach the stages of monolayer and micro colony. The mature biofilm is equipped with extracellular polymeric matrix and internal water-filled channels. This complex architecture can be achieved by differential expressions of several hundred genes, among which the most studied are the genes encoding exopolysaccharide biosyntheses and quorum-sensing regulatory components. The status of our knowledge for the biofilms found in humans and natural ecosystems is discussed in this minireview.

Keywords

References

  1. Araya, R., T. Katsuji, T. Tatsuya, Y. Nobuyasu, and N. Masao. 2003. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbial. Ecal. 43: 111-119 https://doi.org/10.1111/j.1574-6941.2003.tb01050.x
  2. Bryer J. D. and B. D. Ratner. 2004. Bioinspired implant materials befuddle bacteria. ASM News. 70: 232-237
  3. Casper-Lindley, C. and F. H. Yildiz. 2004. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae OI El Tor. J. Bacteriol. 186:1574-1578 https://doi.org/10.1128/JB.186.5.1574-1578.2004
  4. Costerton, J. W., G G Geesey, and G K. Cheng. 1978. How bacteria stick. Sci. Am. 238:86-95 https://doi.org/10.1038/scientificamerican0178-86
  5. Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322 https://doi.org/10.1126/science.284.5418.1318
  6. Croxatto, A., V. J. Chalker, J. Lauritz, J. Jass, A. Hardman, P. Williams, M. Camara, and D. L. Milton. 2002. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J. Bacteriol. 184: 1617-1629 https://doi.org/10.1128/JB.184.6.1617-1629.2002
  7. Danese, P. N., L. A. Pratt, and R. Kolter. 2000. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol. 182: 3593-3956 https://doi.org/10.1128/JB.182.12.3593-3596.2000
  8. Davey, M. E., N. C. Caiazza, and G A. O'Tool. 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacterial, 185: 1027-1036 https://doi.org/10.1128/JB.185.3.1027-1036.2003
  9. Davies, D. G., M. R. Parsek., J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298 https://doi.org/10.1126/science.280.5361.295
  10. Dewanti, R., and A. C. L. Wong. 1995. Influence of culture conditions on biofilm formation by Escherichia coli 0157:H7. Int. J. Food Microbiol. 26: 147-164 https://doi.org/10.1016/0168-1605(94)00103-D
  11. Donlan, R. M. and J. W. Costerton. 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167-193 https://doi.org/10.1128/CMR.15.2.167-193.2002
  12. Eberl, L., M. K. Winson, C. Sternberg, G. S. Stewart, G. Christiansen, S. R. Chhabra, B. Bycroft, P. Williams, S. Molin, and M. Givskov. 1996. Involvement of N-acyl-Lhomoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol. Microbial. 20: 127-136 https://doi.org/10.1111/j.1365-2958.1996.tb02495.x
  13. Friedman, L., and R. Kolter. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51: 675-690 https://doi.org/10.1046/j.1365-2958.2003.03877.x
  14. Friedman, L., and R. Kolter. 2004. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol. 186: 4457-4465 https://doi.org/10.1128/JB.186.14.4457-4465.2004
  15. Gavin, R., A. A. Rabaan, S. Merino, J. M. Tomas, I. Gryllos, and J. G. Shaw. 2002. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol. Microbiol. 43: 383-397 https://doi.org/10.1046/j.1365-2958.2002.02750.x
  16. Gilbert, P., J. Das, and I. Foley. 1997. Biofilms susceptibility to antimicrobials. Adv. Dent. Res. 11: 160-167 https://doi.org/10.1177/08959374970110010701
  17. Giron, J. A., A. G. Torres, E. Freer, and J. B. Kaper. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44: 361-379 https://doi.org/10.1046/j.1365-2958.2002.02899.x
  18. Hammer, B. K., and B. L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50: 101-114 https://doi.org/10.1046/j.1365-2958.2003.03688.x
  19. Hasman, H., M. A. Schembri, and P. Klemm. 2000. Antigen 43 and type 1 fimbriae determine colony morphology of Escherichia coli K-12. J. Bacteriol. 182: 1089-1095 https://doi.org/10.1128/JB.182.4.1089-1095.2000
  20. Herrington, D. A., R. H. Hall, G. Losonsky, J. J. Mekalanos, R. K. Taylor, and M. M. Levine. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168: 1487-1492 https://doi.org/10.1084/jem.168.4.1487
  21. Hoang, H. H., A. Becker, and J. E. Gonzalez. 2004. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sino rhizobium meliloti gene expression. J. Bacteriol. 186: 5460-5472 https://doi.org/10.1128/JB.186.16.5460-5472.2004
  22. Jensen, E. T., A. Kharazani, K. Lam, J. W. Costerton, and N. Hoiby. 1990. Human polymorphonuclear leukocute response to Pseudomonas aeruginosa grown in biofilms. Infect. Immun. 58: 2383-2385
  23. Jeong, H. S., M. H. Lee, K.-H. Lee, S.-J. Park, and S. H. Choi. 2003. SmcR and cyclic AMP receptor protein coactivate Vibrio vulnificus vvpE encoding elastase through the RpoS-dependent promoter in a synergistic manner. J. Biol. Chem. 278: 45072-450781 https://doi.org/10.1074/jbc.M308184200
  24. Kalmbach, S., W. Manz, and U. Szewzyk. 1997. Dynamics of biofilm formation in drinking water: Phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. Microb. Ecol. 22: 265-279 https://doi.org/10.1111/j.1574-6941.1997.tb00379.x
  25. Kovacikova, G and K. Skorupski. 2002. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol. 46: 1135-1147 https://doi.org/10.1046/j.1365-2958.2002.03229.x
  26. Kovacikova, G and K. Skorupski. 2002. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol. 46: 1135-1147 https://doi.org/10.1046/j.1365-2958.2002.03229.x
  27. Kwon, K. K., H. S. Lee, S. Y. Jung, J. H. Yim, J. H. Lee, and H. K. Lee. 2002. Isolation and identification of biofilm-forming marine bacteria on glass surfaces in Dae-Ho Dike, Korea. J. Microbiol. 40: 260-266
  28. Lee, J. H., J. B. Rho, K. J. Park, C. B. Kim, Y. S. Han, S. H. Choi, K.-H. Lee, and S.-J. Park. 2004. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun. 72: 4905-4910 https://doi.org/10.1128/IAI.72.8.4905-4910.2004
  29. Lee, Y. K., K. K. Kwon., K. H. Cho, H. W. Kim, J. H. Park, and H. K. Lee. 2003. Culture and identification of bacteria from marine biofilms. J. Microbiol. 41: 183-188
  30. Matsukawa, M. and E. P. Greenberg. 2004. Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J. Bacteriol. 186: 4449-4456 https://doi.org/10.1128/JB.186.14.4449-4456.2004
  31. McCarter, L. L. 1998. OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. J. Bacterial. 180: 3166-3173
  32. Mclean, R J. C., M. Whiteley, D. J. Stickler, and W. C. Fuqua. 1997. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol. Lett. 154: 259-263 https://doi.org/10.1111/j.1574-6968.1997.tb12653.x
  33. Nyvad, B., and M. Kilian. 1990. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 24: 267-272 https://doi.org/10.1159/000261281
  34. Olvera, C, J. B. Goldberg, R Sanchez, and G SoberonChavez. 1999. The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol. Lett. 179: 85-90 https://doi.org/10.1111/j.1574-6968.1999.tb08712.x
  35. O'Toole, G. A, H. B. Kaplan, and R Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbial. 54:49-79 https://doi.org/10.1146/annurev.micro.54.1.49
  36. O'Toole, G. A, and R Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbial. 30: 295-304 https://doi.org/10.1046/j.1365-2958.1998.01062.x
  37. O'Toole, G. A, and R Kolter. 1998. The initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: A genetic analysis. Mol. Microbiol. 30: 449-461
  38. Otto, K., and T. J. Silhavy. 2002. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc. Natl. Acad. Sci. USA. 99: 2287-2292
  39. Park, H. M., M. Wolfgang, J. P. M. van Putten, D. Dorward, S. F. Hayes, and M. Koomey. 2001. Structural alterations in a type IV pilus subunit protein result in concurrent defects in multicellular behavior and adherence to host tissue. Mol. Microbial. 42: 293-307 https://doi.org/10.1046/j.1365-2958.2001.02629.x
  40. Parsek, M. R, and P. K. Singh. 2003. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677-701 https://doi.org/10.1146/annurev.micro.57.030502.090720
  41. Pellock, B. J.,M. Teplitski, R P. Boinay, W. D. Bauer, and G. C. Walker. 2002. A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J. Bacteriol. 184: 5067-5076 https://doi.org/10.1128/JB.184.18.5067-5076.2002
  42. Pratt, L. A, and R Kolter. 1998. Genetic analysis of Escherichia coli biofilm formation: Defining the roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30: 285-294 https://doi.org/10.1046/j.1365-2958.1998.01061.x
  43. Pratt, L. A and R Kolter. 1999. Genetic analyses of bacterial biofilm formation. Curro Opin. Microbiol. 2: 598-603
  44. Rashid, M. H., C. Raj anna, D. Zhang, V. Pasquale, L. S. Magder, A. Ali, S. Dumontet, and D. K. R. Karaolis. 2004. Role of exopolysaccharide, the rugose phenotype and VpsR in the pathogenesis of epidemic Vibrio cholerae. FEMS Microbiol. Lett. 230: 105-113 https://doi.org/10.1016/S0378-1097(03)00879-6
  45. Sauer, K., A. K. Camper. G. D. Ehrlich, J. W. Costerton, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154 https://doi.org/10.1128/jb.184.4.1140-1154.2002
  46. Schembri, M. A, G. Christiansen, and P. Klemm. 2001. FimH-mediated autoaggregation of Escherichia coli. Mol. Microbiol. 41: 1419-1430 https://doi.org/10.1046/j.1365-2958.2001.02613.x
  47. Silva A. J. and J. A Benitez. 2004. Transcriptional regulation of Vibrio cholerae hemagglutinin/protease by the cyclic AMP receptor protein and RpoS. J. Bacteriol. 186: 6374-6382 https://doi.org/10.1128/JB.186.19.6374-6382.2004
  48. Singh, R, O. C. Stine, D. L. Smith, J. K Jr. Spitznagel, M. E. Labib., and H. N. Williams. 2003. Microbial diversity of biofilms in dental unit water systems. Appl. Environ. Microbiol. 69:3412-3420 https://doi.org/10.1128/AEM.69.6.3412-3420.2003
  49. Stoodley, P., K Sauer, D. G. Davies, and J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56: 187-209 https://doi.org/10.1146/annurev.micro.56.012302.160705
  50. Thelin, K. H., and R. K. Taylor. 1996. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae OI EI Tor biotype and 0139 strains. Infect. Immun. 64: 2853-2856
  51. Vance, R. E., J. Zhu, and J. J. Mekalanos. 2003. A constitutively active variant of the quorum-sensing regulator LuxO affects protease production and biofilm formation in Vibrio cholerae. Infect. Immun. 71: 2571-2576 https://doi.org/10.1128/IAI.71.5.2571-2576.2003
  52. Watnick, P. I., K. J. Fullner, and R. Kolter. 1999. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae EI Tor. J. Bacteriol. 181: 3606-3609
  53. Watnick, P. I., C. M. Lauriano, K. E. Klose, L. Croal, and R. Kolter. 2001. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol. Microbiol. 39: 223-235 https://doi.org/10.1046/j.1365-2958.2001.02195.x
  54. Wilson, M. 2001. Bacterial biofilms and human disease. Sci. Progress 84: 235-254 https://doi.org/10.3184/003685001783238998
  55. Yildiz, F. H., N. A. Dolganov, and G. K. Schoolnik. 2001. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and $EPS^{ETr}-associated $ phenotypes in Vibrio cholerae OI EI Tor. J. Bacteriol. 183: 1716-1726 https://doi.org/10.1128/JB.183.5.1716-1726.2001
  56. Yildiz, F. H., and G. K. Schoolnik. 1999. Vibrio cholerae OI El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. USA. 96: 4028-4033
  57. Zhu, J., and J. J Mekalanos. 2003. Quorum sensing-depen-dent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5: 647-656 https://doi.org/10.1016/S1534-5807(03)00295-8
  58. Zobell, C. E. 1943. The effect of solid surfaces upon bacterial activity. J. Bacterial. 46: 39-56