A HIGHER ORDER MONOTONE ITERATIVE SCHEME FOR NONLINEAR NEUMANN BOUNDARY VALUE PROBLEMS

BASHIR AHMAD, UZMA NAZ, AND RAHMAT A. KHAN

ABSTRACT. The generalized quasilinearization technique has been employed to obtain a sequence of approximate solutions converging monotonically and rapidly to a solution of the nonlinear Neumann boundary value problem.

1. Introduction

The method of generalized quaslinearization introduced by Laksh-mikantham ([4, 5]) has been successfully employed to obtain a sequence of approximate solutions converging monotonically to a solution of the nonlinear problem, see, for example, [1-3, 6-10]. In this paper, we continue the study of nonlinear Neumann problems addressed in [1] and improve the convergence of a sequence of approximate solutions converging monotonically to a solution of the nonlinear Neumann boundary value problem. In fact, we establish the convergence of order $k(k \ge 2)$.

2. Some basic results

We know that the linear Neumann boundary value problem

$$-u''(t) = \lambda u(t),$$
 $t \in J = [0, \pi]$
 $u'(0) = 0,$ $u'(\pi) = 0,$

has a nontrivial solution if and only if $\lambda = m^2, m = 1, 2, ...$ and thus, for $\lambda \neq m^2$ and $\xi(t) \in C[0, \pi]$, the corresponding nonhomogeneous problem

$$-u''(t) - \lambda u(t) = \xi(t), \qquad t \in J$$

Received April 1, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 34A45, 34B15.

Key words and phrases: quasilinearization, mixed boundary conditions, rapid convergence.

$$u'(0) = 0,$$
 $u'(\pi) = 0,$

has a unique solution

$$u(t) = \int_0^{\pi} G_{\lambda}(t, s) \xi(s) ds,$$

where G_{λ} is the Green's function of the associated homogeneous problem and is given by

$$G_{\lambda} = \frac{1}{\sqrt{\lambda} \sin \sqrt{\lambda} \pi} \left\{ \begin{array}{l} \cos[\sqrt{\lambda}(\pi - s)] \cos[\sqrt{\lambda}t], & \text{if } 0 \le t \le s \le \pi \\ \cos[\sqrt{\lambda}s)] \cos[\sqrt{\lambda}(\pi - t)], & \text{if } 0 \le s \le t \le \pi \end{array} \right.$$

for $\lambda > 0$,

$$G_{\lambda} = \frac{1}{\sqrt{-\lambda} \sinh \sqrt{-\lambda} \pi}$$

$$\begin{cases} \cosh[\sqrt{-\lambda}(\pi - s)] \cosh[\sqrt{-\lambda}t], & \text{if } 0 \le t \le s \le \pi \\ \cosh[\sqrt{-\lambda}s] \cosh[\sqrt{-\lambda}(\pi - t)], & \text{if } 0 \le s \le t \le \pi \end{cases}$$

for $\lambda < 0$. We observe that $G_{\lambda} \geq 0$ for $\lambda < 0$. Now, we consider the nonlinear Neumann problem

(1)
$$-u''(t) = f(t, u(t)), t \in J$$
$$u'(0) = 0, u'(\pi) = 0,$$

where $f: J \times R \to R$ is continuous. The problem (1) is equivalent to the integral equation

(2)
$$u(t) = u(0) - \int_0^t (t-s)f(s, u(s))ds$$

with

(3)
$$\int_0^t f(s, u(s))ds = 0.$$

We shall say that $\alpha(t) \in C^2[J]$ is a lower solution of (1) if

$$-\alpha''(t) \le f(t, \alpha(t)), \qquad t \in J$$

$$\alpha'(0) \ge 0, \qquad \alpha'(\pi) \le 0,$$

and $\beta \in C^2[J]$ is an analogue upper solution of (1) if

$$-\beta''(t) \ge f(t, \beta(t)), \qquad t \in J$$
$$\beta'(0) \le 0, \qquad \beta'(\pi) \ge 0.$$

The following theorem plays a crucial role in the forthcoming analysis

and for its proof, see reference [11].

THEOREM 1. Let $\alpha, \beta \in C^2[J, R]$ be lower and upper solutions of (1) respectively such that $\alpha(t) \leq \beta(t)$ on J. Then there exists a solution u(t) of (1) such that $\alpha(t) \leq u(t) \leq \beta(t)$, $t \in J$.

3. Higher order monotone iterative scheme

Theorem 2. Assume that

 (B_1) $\alpha, \beta \in C^2[J, R]$ such that $\alpha(t) \leq \beta(t)$ on J are lower and upper solutions of (1) respectively.

 (B_2)] $\frac{\partial^i f}{\partial x^i}(t,u)$, i=1,2,3,...,k exist and are continuous on $\Omega=\{(t,u)\in J\times R\}$ such that $\frac{\partial f}{\partial u}(t,u)<0$, $\frac{\partial^k}{\partial u^k}(f(t,u)+\phi(t,u))\geq 0$ for some function $\phi\in C^{0,k}[J\times R,R]$ such that $\frac{\partial^k\phi}{\partial u^k}(t,u)\geq 0$. Then there exists a monotone nondecreasing sequence $\{\mu_n\}$ of solutions

Then there exists a monotone nondecreasing sequence $\{\mu_n\}$ of solutions which converges uniformly to a solution of (1) with the order of convergence k ($k \ge 2$).

Proof. Set

$$\phi(t,u) = F(t,u) - f(t,u), \qquad t \in J.$$

Using (B_2) and generalized mean value theorem, we have

$$f(t,u) \, \geq \, \sum_{i=0}^{k-1} rac{\partial^i F}{\partial u^i}(t,v) rac{(u-v)^i}{(i)!} - \phi(t,u),$$

where $\alpha(t) \leq v(t) \leq u(t) \leq \beta(t)$. Now, we define

$$K(t, u, v) = \sum_{i=0}^{k-1} \frac{\partial^{i} F}{\partial u^{i}}(t, v) \frac{(u - v)^{i}}{(i)!} - \phi(t, u),$$

$$= \sum_{i=0}^{k-1} \frac{\partial^{i} f}{\partial u^{i}}(t, v) \frac{(u - v)^{i}}{(i)!} - \frac{\partial^{k} \phi}{\partial u^{k}}(t, \xi) \frac{(u - v)^{k}}{(k)!},$$

where $v \leq \xi \leq u$, and $\alpha \leq v \leq u \leq \beta$ on J. Observe that

(4)
$$K(t, u, v) \le f(t, u), \qquad K(t, u, u) = f(t, u).$$

Now, set $\mu_o = \alpha$ and consider the problem

(5)
$$-u''(t) = K(t, u(t), \mu_o(t)), \qquad t \in J$$
$$u'(0) = 0, \qquad u'(\pi) = 0.$$

Using (B_1) and (4), we get

$$-\mu''_o(t) \le f(t, \mu_o(t)) = K(t, \mu_o(t), \mu_o(t)), \qquad t \in J$$
$$\mu'_o(0) \ge 0, \qquad \mu'_o(\pi) \le 0,$$

and

$$-\beta''(t) \ge f(t, \beta(t)) \ge K(t, \beta, \mu_o), \qquad t \in J$$
$$\beta'(0) \le 0, \qquad \beta'(\pi) \ge 0,$$

which imply that μ_o and β are lower and upper solution of (5) respectively. Hence, by Theorem 1, there exists a solution μ_1 of (5) such that $\mu_o \leq \mu_1 \leq \beta$ on J. Next, we consider the problem

(6)
$$-u''(t) = K(t, u(t), \mu_1(t)), \qquad t \in J$$
$$u'(0) = 0, \qquad u'(\pi) = 0.$$

Employing the earlier arguments, it can be shown that there exists a solution μ_2 of (6) such that $\mu_1 \leq \mu_2 \leq \beta$ on J, where μ_1 and β are lower and upper solution of (6) respectively. Continuing this process successively, we obtain a monotone sequence $\{\mu_n\}$ of solutions satisfying

$$\mu_0 \le \mu_1 \le \mu_2 \le \mu_3 \le \dots \le \mu_{n-1} \le \mu_n \le \beta$$
,

on J, where the element μ_n of the sequence is the solution of the problem

$$-u''(t) = K(t, u(t), \mu_{n-1}(t)), \qquad t \in J$$
$$u'(0) = 0, \qquad u'(\pi) = 0.$$

Since the sequence $\{\mu_n\}$ is monotone, it follows that it has a pointwise limit μ . To show that μ is in fact a solution of (1), we observe that μ_n is the solution of the following Neumann problem

$$-u''(t) = f_n(t), t \in J$$

 $u'(0) = 0, u'(\pi) = 0.$

where $f_n(t) = K(t, \mu_n(t), \mu_{n-1}(t))$. Since $f_n(t)$ is continuous on Ω and $\alpha \leq \mu_n \leq \beta$ on Ω for n = 1, 2, ..., it follows that the sequence $\{f_n(t)\}$ is bounded in C[J, R]. This together with the the monotonicity of $\{\mu_n\}$ implies that the sequence $\{\mu_n\}$ uniformly converges to μ . Letting $n \to \infty$, and using the uniform convergence of $\{\mu_n\}$, we find that μ satisfies the integral equation (2) and (3) and hence μ is a solution of (1).

To show that the convergence of the sequence is of order k $(k \ge 2)$, we set $e_n = \mu - \mu_n$, $a_n = \mu_{n+1} - \mu_n$, $n = 1, 2, 3, \cdots$. Clearly, $a_n \ge 0$,

 $e_n \geq 0$, $e_n - a_n = e_{n+1}$, $a_n \leq e_n$ and $a_n^k \leq e_n^k$. Using the mean value theorem repeatedly, we have

$$\begin{split} -e_{n}''(t) &= \mu_{n}''(t) - \mu''(t) \\ &= \sum_{i=0}^{k-1} \frac{\partial^{i} f}{\partial u^{i}}(t, \mu_{n-1}) \frac{(e_{n-1}^{i} - a_{n-1}^{i})}{(i)!} \\ &\quad + \frac{\partial^{k} f}{\partial u^{k}}(t, \zeta(t)) \frac{e_{n-1}^{k}}{k!} + \frac{\partial^{k} \phi}{\partial u^{k}}(t, \zeta(t)) \frac{a_{n-1}^{k}}{k!} \\ &\leq (\sum_{i=1}^{k-1} \frac{\partial^{i} f}{\partial u^{i}}(t, \mu_{n-1}) \frac{1}{(i)!} \sum_{j=0}^{i-1} e_{n-1}^{i-j-1} a_{n-1}^{j}) e_{n} \\ &\quad + \left[\frac{\partial^{k} f}{\partial u^{k}}(t, \zeta(t)) + \frac{\partial^{k} \phi}{\partial u^{k}}(t, \zeta(t)) \right] \frac{e_{n-1}^{k}}{k!} \\ &\leq q_{n}(t) e_{n} + N e_{n-1}^{k}, \end{split}$$

where

$$q_n(t) = \sum_{i=1}^{k-1} \frac{\partial^i}{\partial u^i} f(t, \mu_{n-1}) \frac{1}{(i)!} \sum_{j=0}^{i-1} e_{n-1}^{i-1-j} a_{n-1}^j,$$

and N > 0 provides bound for $\frac{\partial^k F}{\partial u^k}(t,\zeta(t))$ on Ω . As $\lim_{n\to\infty}q_n(t) = f_u(t,\mu) < 0$, we can choose $\lambda < 0$ and $n_o \in N$ such that for $n \ge n_o$, $q_n(t) < \lambda$, we have

$$-e_n''(t) - \lambda(t)e_n(t) \le (q_n(t) - \lambda)e_n(t) + Ne_{n-1}^k \le Ne_{n-1}^k,$$

$$e_n'(0) = 0, \qquad e_n'(\pi) = 0,$$

whose solution is

$$e_n(t) = \int_0^{\pi} G_{\lambda}(t,s) N e_{n-1}^k ds, \qquad t \in J.$$

Taking maximum over $[0, \pi]$, we obtain

$$||e_n|| \le C||e_{n-1}||^k$$

where C provides a bound on $N \int_0^{\pi} G_{\lambda}(t,s)ds$. This completes the proof.

References

 Bashir Ahmad, J. J. Nieto, and N. Shahzad, The Bellman Kalaba Lakshmikantham quasilinearization method for Neumann problems, J. Math. Anal. Appl. 257 (2001), 356-363.

- [2] Bashir Ahmad, Rahmat A. Khan, and S. Sivasundaram, Generalized quasilinearization method for nonlinear boundary value problems, Dynam. Systems Appl. II, 3 (2002), 359–370.
- [3] Albert Cabada, J. J. Nieto, and Rafael Pita-da-veige, A note on rapid convergence of approximate solutions for an ordinary Dirichlet problem, Dyn. Contin. Discrete Impuls. Syst. 4 (1998), 23–30.
- [4] V. Lakshmikantham, An extension of the method of quasilinearization, J. Optim. Theory Appl. 82 (1994), 315–321.
- [5] ______, Further improvement of generalized quasilinearization, Nonlinear Anal. 27 (1996), 315–321.
- [6] V. Lakshmikantham, S. Leela, and F. A. McRae, *Improved generalized quasilinearization method*, Nonlinear Anal. **24** (1995), 1627-1637.
- [7] V. Lakshmikantham and N. Shahzad, Further generalization of generalized quasi-linearization method, J. Appl. Math. Stochastic Anal. 7 (1994), 545–552.
- [8] V. Lakshmikantham, N. Shahzad, and J. J. Nieto, Method of generalized quasilinearization for periodic boundary value problems, Nonlinear Anal. 27 (1996), 143-151.
- [9] V. Lakshmikantham and A. S. Vatsala, Generalized quasilinearization for Non-linear Problems, Kluwer Academic Publishers, Dordrecht, 1998.
- [10] J. J. Neito, Generalized quasilinearization method for a second order ordinary differential equation with Dirichlet boundary conditions, Proc. Amer. Math. Soc. 125 (1997), 2599-2604.
- [11] J. J. Neito and A. Cabada, A generalized upper and lower solutions method for nonlinear second order ordinary differential equations, J. Appl. Math. Stochastic Anal. 5 (1992), 157-166.

Bashir Ahmad, Department of Mathematics, Faculty of Science, King Abdul Aziz University, P. O. Box. 80203, Jeddah 21589, Saudi Arabia *E-mail*: bashir_qau@yahoo.com

UZMA NAZ AND RAHMAT A. KHAN, DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY, ISLAMABAD, PAKISTAN

E-mail: u_naz@yahoo.com & rahmat_alipk@yahoo.com