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ON FACTORIZATION OF SOLUTIONS TO SECOND
ORDER LINEAR DIFFERENTIAL EQUATIONS

WANG SHENG

ABSTRACT. If a meromorphic solution of second order homoge-
neous linear differential equation is factorizable, then the right fac-
tor of the factorization of the solution has order not more than
the coefficient’s. And some asympotic properties of solutions are
studied.

1. Introduction

A transcendental meromorphic function f(z), in the complex plane
C, is factorizable, if f(z) is of the form

f(2) = g(h(z)),

where g(z) is transcendental, meromorphic and h(z) is transcendental,
entire. g(z) is called the left factor of the factorization of f(z), h(z) the
right factor of the factorization of f(z). In this paper, we always study
the form of f(z) = g(h(z)). f(2) is prime, if for every factorization of
f(z), either g(z) is bilinear or h(z) is linear. If g(z) is always a rational
function, or h(z) is always polynomial, f(z) is said to be pseudo prime.
Steinmetz [7] pointed out that any nonmtrivial solution of linear differ-
ential equations with rational coeflicients is pseudo prime. Zheng and
He [12] studied some second order homogeneous linear differential equa-
tions, and prove some solutions are prime, and some are factorizable. In
the following, we continue to research the factorization of solutions of
second order linear differential equations with meromorphic coefficients.
And some asymptotical properties of solutions are studied under the

consideration of the coefficients with order less than %
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Consider the following equation
(1.1) f"+AR)f=0

where A(z) is meromorphic, transcendental of finite order. It is known
that every nontrivial solution f(z) of (1.1) is transcendental, see [2]. If
A(z) is entire, any nontrivial solution of (1.1) is of infinite order, see
[2] and if f(2) # O, then f(z) is factorizable, its right factor of the
factorization is of the same order as A(z), for the solution must be
written as f(z) = e9®*), where g(z) is entire and its order is equal to
the order of A(z), see [2]; if A(z) is meromorphic, the (1.1) may have a
nontrivial meromorphic solution of finite order, see Remarks in §5. It is
easy to prove that for any nontrivial meromorphic solution f(z), every
pole of f(z) must be a pole of A(z).

Let f(z) be a meromorphic function, o(f), u(f) and A(f) denote the
order of f(z), the lower order of f(z) and the exponent of convergence
of zero-sequence of f(z), respectively, i.e.,

+
o(f) = lim sup log™ T'(r, f)
r—00 logr
+
u(f) = liminf —__log T(r, f),
7—00 logr
log™ N(r, 2
A(f) = limsup g—(—iz
r—00 log'r

Nevanlinna theory and some standard notations come from [4].

Our main results may be stated as follows.

THEOREM 1.1. Let f(z) be a nontrivial meromorphic solution of
(1.1). If f(2) = g(h(2)) is factorizable, then o(h) < g(A).

From Theorem 1.1, it follows the corollary below:

COROLLARY. Let f(z) be a nontrivial meromorphic solution of (1.1).
If f(2) = g(h(2)) and o(h) > og(A), then g(z) is rational.

THEOREM 1.2. Suppose A(z) is a transcendental meromorphic func-
tion of order less than %, f(2z) is a nontrivial meromorphic solution of
(1.1) and f(z) = g(h(z)) is factorizable. If g(z) has a finite deficient
value a, then there exists a line L approaching to oo such that

lim inf 28108 /()] S 1

- L.
lzjso0  loglz| T 27 Z€
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Let f(2) be meromorphic in C. If n(r, f) = O(r*),k < % < u(f)
W. Hayman asks whether the corresponding Boas’ theorem holds or not.
See [5,10]. Our Theorem 1.2 describes this property.

2. Lemmas

The following lemma is from Theorem 4.4.5 in [11], or see [3, 7].

LEMMA 2.1. Let Fj(z) and h;(2)(j = 0,1,2,--- ,m) be not identi-
cally vanishing meromorphic functions, and g(z) be a nonconstant entire
function. There exists an unbounded positive sequence {r,}5; satisfy-

ing

ZT(Tna h]) S KT(T'nag)v

j=0
where K is a positive constant. If Fj(z) and hj(z)(j = 0,1,2,--+ ,m)
satisfy
Fo(g)ho + -+ + Fin(g)hm =0,
then there exist polynomials Py, Py, -- , Py, not all identically zero such
that

Pg(g)ho + P (g)hl + -4 Pm(g)hm = 0.

Furthermore, if h;’s are not all identically zero, then there exist not all
identically zero polynomials Qg, @1, , @m such that

Fo(2)Qo(2) + F1(2)Q1(2) + -+ + Fn(2)Q@m(2) = 0

From a result of Valiron [8], one has

LEMMA 2.2 Let f(z) be a transcendental entire solution of (2.1)
(2.1) az(2)f" + a1(2)f' + ao(2)f = 0,
where as(z) # 0,a1(z),ao(z) are polynomials. Then u(f) > 0.

LEMMA 2.3. Let H(z) and h(z) be transcendental entire functions
of finite order. If \(H) > 0, then A(H(h)) = co.

Proof. Let {z}72, be a sequence zeros of H(z). By Hadamard-
Borel’s theorem, H(z) can be expressed as

H(z) = 2meP@11(2),
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where P(z) is a polynomial with degree deg P(z) < ¢(H), m is a non-
negative integer, II(z) is of the form as follows

I(z) = Y (1- )e™e),
k=1 k
and
()= A2y
2k itz ’

g is the minimum nonnegative integer satisfying

21

g —— < 00.
1

k=1 IZqu

If ¢ = 0, then o(II) = 0, this is a contradiction to A(IT) > 0. So g > 1,
and then A(H(h)) = co. The proof is complete. O

From Theorem 3.5 in [10], we state the following.

LEMMA 2.4. Let f(z) be an entire function of a finite deficient value.
Then u(f) > %

The following lemma from Theorem 4.16 [10].

LEMMA 2.5. Let f(z) be meromorphic in the plane and satisfy
. log* n(r, f) ) 1
| —— I =k<p= =}.
imsup = p = min{u(f), 5}
Then there exists a line L approaching to infinity such that
lzl—0  log|z|

on L.

3. The proof of Theorem 1.1

By Theorem 5.1 in [2], we have
logt log™ T
(3.1) lim sup og log” T(r, f)
r—00 log T

Assume that o(h) > o(A). Then there is a small number € > 0, such
that

< o(A).

o(h) > o(A) + e
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There exists an unbounded sequence {r,},r, — 0o as n — oo, such that
T(rp, h) > ro(A)+e,
Take r € [ry, 2ry,], and then
T(r,h) > T(rn,h)

> TZ(A)Jre

— 2—G(A)~e(2,r.n)a(A)+e

> 2—0’(A)—€ ro(A)te
When r is sufficiently large, we have
T(r, A) < r7A+3,
And then
o0
T(r,h) > T(r, A), r € U [Pnsy 27)
n=N

where N is some positive integer. Since h is entire, by Nevanlinna theory,
we obtain

T(r,h") < 2T(r, h), ré¢ E
and
T(r,h?) < 3T(r,h), r¢&E

where E is a possible set of values r of finite linear measure. Because
Un2n[7n,2ryn] has infinite linear measure, we deduce that there is a

sequence
oo

{Fx} € | [rns 2ra]\E,

n=N
Tr — 00 as k — 00, such that

T(Fg, K'?) + T (7, h") + T(7y, A) < 6T (Tx, h).
Substituting f(z) = g(h(2)) into (1.1), we have
g" (R + g'(h)h" + Ag(h) = 0.

By Lemma 2.1, we obtain that there exist not all identically zero poly-
nomials Qg, @1, @2 such that

9(2)Qo(2) + ¢'(2)Q1(2) + ¢" (2)Q2(2) = 0.
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By Lemma 2.2, we get u(g) > 0. g(z) has at most finitely many poles.
Let H(z)
z

9(2) 00
where H(z) is entire, and Q(z) is a nonzero polynomial. Obviously
o(H) = o(g), p(H) = p(g) and T(r,Q(h)) = o{T'(r,H(h))}. Since
H(z) has positive lower growth order, there is a positive number ¢ > 0,
such that for all » > 0,

log M(r, H) > r°.

By a result of Polya [6], there is a number ¢(0 < ¢ < 1), such that for
all 7 > 0,

logloglog M(r, H(h)) > logloglog M (cM(5,h),H)
> loglog M(5,h) — O(1).
By (3.1), we have

loglog M(%, h
o(h) = limsup loglog M (3, h) < lim sup log log log M (r, g(R))
r—00 logr 00 log 7

o(A).

This is a contradiction to our assumption. So o(h) < g(A). The proof
is complete.

4. Proof of Theorem 1.2

Proof. If g(z) has at least one pole, then set
_ G(2)
g(Z) - H(Z),

where G(z), H(z) are nonconstant entire and H(z) # 0 is the canonical
product of poles of g(z) if g(z) has infinitely many poles, if g(z) has at
most finitely many poles, H(z) is a nonzero polynomial. Since every
pole of f(z) is a pole of A(z), noting that o(A4) < oo, by Lemma 2.3,
MH) = o(H) = 0. As a is a deficient value of g(z), 0 is the deficient
value of G(z) — aH(z), by Lemma 2.4, u(G) = u(G — aH) > 3, so does
u(g)-

If g(2) is entire, by Lemma 2.4, u(g) > %

From pu(g) > 3, we have u(g(h)) > 1. Note that

log™* 1
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By Lemma 2.5, there exists a path L tending to oo, such that

o OB 1B 1@ | 1
|z|—00 log | 2| 2

Theorem 1.2 follows. O

z € L.

5. Remarks

The factorization f(z) = g(h(z)), satisfying (1.1), may have kinds of
forms of the factorization, in the sense of the growth order of the left or
right factor of the factorization.

(1) o(f) < oo may occure. For example, f(z) = e%* + 1 solves

f” 462z
e +1

and f(z) = (22 + 1) 0 €? is pseudo prime.

f=0,

(2) The left (right) factor, of zero order, may occure. Take
ad 2
o(z) = h(z) = ) e s,
n=1

and

2
AD) = - (dz‘jff (2 + fl%‘)f—’;) (o(hn) ™
then f(z) = g(h(2)) solves
f"+Az)f =0.
But Bake [1] showed that o(f) is finite, nonzero. So is o(A).

(3) If o(A) = 0, we can find examples to show that f(z), of zero
order, is factorizable. For example, take

g(z) =h(z)= 3 e o,

n=0

then Bake (1] showed that o(f) = o(g(h)) = 0. f(z) is a solution of

2 2 2
" ( Loh) (gﬁ) n d@—?%—’i—) (9(h()))2f =0,
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(4) For the case A(f) < oo, Zheng and He [12] studied that f(z) =
P(e?)e®(#)14z solves
w” + A(e*)w = 0,
where A(z) = ?:0 bjz?,pp, # 0,p < 2, d is not a rational number, 9(£)
is a polynomial having at least a nonzero simple zero, and o(®(z)) < oo,
and obtained that f(z) is prime.

If d is a rational number, or ¥(¢) is a rational function, we may have
a factorizable solution f(z), with 0 < A(f) < oo. For example,

F(2) = (€77 +1)e2® ¥ = (2 + 1)e3% 0 ¢?
solves L
- Zez(ez +6)f =0.
Obviously, A(f) = 1.

(5) o(g) = oo may occure. For example, let
-

h(z) = Z e_"(log")zz",

n=1
and g(z) = e, f(z) = g(h(2)) solves
"= (W'(2) - K (h(2)) + W2 (2) - B (B(2)) + (K (2) - B (h(2)))®) f = 0.

By (2), "(2) - K'(h(2)) + K(2) - K" (h(z)) + (W'(2) - K" (h(2)))? has finite

order. But o(g) = o(e?) = co. This example shows that the left factor is

more different than the right factor shown in Theorem 1.1 or Corollary.
Theorem 1.1 was proved in [9].
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