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CHARACTERIZATIONS OF COTYPE OF
OPERATORS ACTING ON BANACH LATTICES

Hi Ja Song

Abstract. We characterize Gaussian cotype X operators acting

between Banach spaces, where X is a Banach sequence space. Fur-

ther we give an extensive presentation of results on the connections
between cotype and summing operators.

1. Introduction

The theory of type and cotype reflects the interplay between geome-
try and probability in Banach spaces. In particular, considerable effort
has been expended on the precise determination of the cotype nature
of certain classes of operators in analysis. The tightness of the rela-
tionship between cotype and summing operators has been spotlighted.

B. Maurey [5] described Rademacher cotype q operators acting on
Banach lattices as follows : Let 2 < q < ∞. The following are equiv-
alent statements about an operator T from a Banach lattice L to a
Banach space F .

(i) T is (q, 1)-summing.
(ii) T is (q, r)-concave for all 1 ≤ r < q.
(iii) T is of Rademacher cotype q.
(iv) There is a constant C such that for all choices of finitely many

disjoint vectors x1, · · · , xn from L we have (
∑n

1 ‖Txk‖q)1/q ≤
C · ‖

∑n
1 xk‖.

Afterwards an alternative approach to this kind of problem was
proposed by G. Pisier [9]. He proved that a (q, 1)-summing operator
acting from a C(K) space to a Banach space admits a factorization
through the Lorentz space Lq,1(µ) for some probability measure µ on
K.

Received December 21, 2004.

2000 Mathematics Subject Classification: 46B07, 47A10, 47B38.
Key words and phrases: cotype of operators, summing operators .



62 Hi Ja Song

Thus concerning operators acting from a C(K) space to a Banach
space, the prototype of (2, 1)-summing operators is the canonical em-
bedding from C([0, 1]) to the Lorentz space L2,1. M. Talagrand [12]
showed that this canonical embedding is not even of Gaussian cotype
2.

Treading the same path of ideas S.J. Montgomery-Smith [6] im-
plicitly rediscovered Pisier’s criteria and proved that for a probability
measure µ on K the canonical embedding from a C(K) space to the
Lorentz-Orlicz space Lt2 log t,2(µ) is of Gaussian cotype 2.

The following Talagrand’s characterization of Gaussian cotype q
operators acting on C(K) spaces [13] built on previous work of S.J.
Montgomery-Smith [6], [7].

Let 2 < q < ∞. The following statements about the operator T
from a C(K) space to a Banach space F are equivalent.

(i) T is of Gaussian cotype q.
(ii) T factors through the Lorentz-Orlicz space Ltq(log t)q/2,1(µ) for

some probability measure µ on K.
(iii) For each sequence (xk) in C(K) satisfying the condition

‖
∑

k

|xk| ‖∞ ≤ 1,

there exists a constant C such that∑
k

‖Txk‖q(
log( C

‖Txk‖ )
)q/2

≤ C.

Talagrand’s result was complemented by M. Junge [2]. He proved
that an operator T from a C(K) space to a Banach space F is of
Gaussian cotype q if and only if

(∑
k

‖Txk‖q

(log(k + 1))q/2

)1/q ≤ C
(∫ 1

0

‖
∑

k

rk(t)xk‖2dt
)1/2

,

for all sequences (xk) in C(K) with (‖Txk‖) decreasing.
In this paper we survey the behavior of cotype operators in con-

nection with the summability property. Here, we present M. Junge’s
approach to this subject [2].
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The concepts of (X, r)-summing and cotype X operators are ex-
tended notions of (q, r)-summing and cotype q operators to the setting
of Banach sequence space X.

We first establish a description of Gaussian cotype X operators
acting between Banach spaces in terms of (X, 2)-summing operators,
which is a generalization of the result due to N. Tomczak-Jaegermann
[14]. And then we provide usable necessary condition which implies
that an operator is of Gaussian cotype X.

By using Junge’s proof, we extend the above mentioned result of
Maurey to the framework of maximal Banach sequence space.

Next we see how the Gaussian cotype X operators on C(K) spaces
are linked with the Rademacher cotype X operators on C(K) spaces.

Finally we characterize weak Gaussian cotype q operators on C(K)
spaces by means of Weyl numbers.

2. Definitions and Notation
We give some of the definitions and notation to be used. Through-

out this paper E and F denote Banach spaces with duals E∗ and F ∗

respectively.
By a Banach sequence space we mean a real Banach lattice on the

set of positive integers.
A Banach sequence space X is called symmetric if ‖(xn)‖X = ‖(x∗n)‖X ,
where (x∗n) denotes the decreasing rearrangement of the sequence (xn).

A Banach sequence space X is said to be maximal if the unit ball
of X is closed in the pointwise convergence topology induced by the
space ω of all real sequences.

The Köthe dual X+ of a Banach sequence space X is

X+ = {σ = (σn) ∈ ω :
∑

|σnτn| < ∞ for all τ = (τn) ∈ X}.

Note that X+ is a Banach sequence space under the norm

‖σ‖+ = sup {
∑

|σnτn| : ‖τ‖X ≤ 1}, σ ∈ X+.

We let M(X, Y ) denote the space of multipliers from a Banach
sequence space X to a Banach sequence space Y , that is M(X, Y )
consists of all scalar sequences σ such that the associated multiplica-
tion operator Mσ is defined and bounded from X to Y . M(X, Y )
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is a Banach sequence space equipped with the norm ‖σ‖M(X,Y ) =
sup {‖στ‖Y : ‖τ‖X ≤ 1}.

For 1 ≤ p < ∞, a Banach lattice L is called p-convex if there is
a constant C such that irrespective of the finite collection of vectors
x1, · · · , xn ∈ L ,we have ‖(

∑n
k=1 |xk|p)1/p‖ ≤ C · (

∑n
k=1 ‖xk‖p)1/p.

The least such C is denoted by Kp(L).
If L is p-convex and Kp(L) = 1 then L(p) = {x : |x|1/p ∈ L} endowed

with the norm ‖x‖L(p) = ‖|x|1/p‖p
L, x ∈ L(p), is a Banach lattice.

Let 1 ≤ p < ∞ and let X be a Banach sequence space. An operator
T from a Banach lattice L to a Banach space F is called (X, p)-concave
if there is a constant C such that for any choice of finitely many vectors
x1, · · · , xn ∈ L ,we have ‖

∑n
k=1 ‖Txk‖ek‖X ≤ C · ‖(

∑n
k=1 |xk|p)1/p‖.

We write KX,p(T ) for the least constant C that works.

Notation. (1) The sequence of unit vectors in `∞ is denoted by (en).
(2) B(E,F ) denotes the set of all bounded linear operators

from E into F .
(3) Mσ denotes the multiplication operator induced by σ.
(4) C(K) denotes the space of all continuous functions

defined on a compact Hausdorff space K.
(5) The closed unit ball of E is denoted by BE .
(6) For 1 < p < ∞, the conjugate of p is denoted by p′,

i.e.,1/p + 1/p′ = 1.
For a sequence (xn) in E we write

‖(xn)‖weak
p = sup {(

∑
n

|〈x∗, xn〉|p)1/p : x∗ ∈ BE∗}.

Let 1 ≤ q ≤ p < ∞. For T ∈ B(E,F ) we set

νq,p(T ) = inf{(
∑

n

‖x∗n‖q)1/q · ‖(yn)‖weak
p′ },

where the infimum is taken over all representations T =
∑

n x∗n ⊗ yn

with (x∗n) in E∗ and (yn) in F . We say that T ∈ B(E,F ) is (q, p)-
nuclear if it can be written in the form T =

∑
n Tn, with Tn ∈ B(E,F )

such that
∑

n νq,p(Tn) < ∞. Define the (q, p)-nuclear norm of T by
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ν̂q,p(T ) = inf{
∑

n νq,p(Tn)}, where the infimum is taken over all finite
representations of T as above.

Let {gk} be a sequence of identically distributed independent stan-
dard Gaussian random variables on a probability space (Ω,Σ, P ).

The sequence of Rademacher functions (rn(t)) on [0,1] is defined
by rn(t) = sign (sin 2nπt) and is a sequence of independent identically
distributed random variables taking the values ±1 with probability
1/2.

An operator T ∈ B(E,F ) is called γ-summing if there is a constant
C such that regardless of the natural number n and regardless of the
choice of x1, · · · , xn in E, we have

(
∫
Ω
‖

∑n
k=1 gk(ω)Txk‖2dP (ω))1/2 ≤ C ‖(xk)n

1‖weak
2 .

The infimum of such C is denoted by πγ(T ). We shall write Πγ(E,F )
for the set of all γ-summing operators from E to F .

Let 1 ≤ p < ∞ and let X be a Banach sequence space. For any
operator T ∈ B(E,F ) we define πn

X,p(T ) = inf C, where the infimum
is taken over all constants C such that for any vectors x1, · · · , xn in
E, ‖

∑n
1 ‖Txk‖ ek‖X ≤ C · ‖(xk)n

1‖weak
p . We say that an operator T is

(X, p)-summing if πX,p(T ) = supn πn
X,p(T ) < ∞.

Let X be a Banach sequence space. For an operator T ∈ B(E,F )
rcn

X(T ) is the smallest constant C such that for any vectors x1, · · · , xn

in E we have

‖
n∑
1

‖Txk‖ek‖X ≤ C · (
∫ 1

0

‖
n∑
1

rk(t)xk‖2dt)1/2.

An operator T is said to be of Rademacher cotype X if rcX(T ) =
supn rcn

X(T ) < ∞.
Let X be a Banach sequence space. For any operator T ∈ B(E,F )

we define gcn
X(T ) = inf C, where the infimum is taken over all constants

C such that for any vectors x1, · · · , xn in E,

‖
n∑
1

‖Txk‖ek‖X ≤ C · (
∫

Ω

‖
n∑

k=1

gk(ω)xk‖2dP (ω))1/2.

We say that an operator T is of Gaussian cotype X if gcX(T ) =
supn gcn

X(T ) < ∞.
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An operator T ∈ B(E,F ) is of weak Gaussian cotype q if there is a
constant C such that

sup
k
{k1/q‖Txk‖} ≤ C · (

∫
Ω

‖
∑

k

gk(ω)xk‖2dP (ω))1/2,

for any sequence (xk) in E with (‖Txk‖) decreasing.
Let f : (0,∞) → (0,∞) be a continuous function with f(1) = 1 and

sups>0
f(ts)
f(s) < ∞ for every t > 0. The Lorentz-Marcinkiewicz sequence

space `f,q consists of all bounded sequences of scalars σ = (σn) having
a finite quasi-norm

‖σ‖f,q =

{ (∑
n(f(n)σ∗n)q n−1

)1/q if 0 < q < ∞,

supn [f(n)σ∗n] if q = ∞.

For 0 < p, q ≤ ∞, −∞ < υ < ∞ and f(t) = t1/p(log(t + 1))υ we get
the Lorentz-Zygmund sequence space which is denoted by

(`p,q(log `)υ, ‖ · ‖p,q,υ).

In particular, for υ = 0 we obtain the Lorentz sequence space (`p,q , ‖ ·
‖p,q).

The n-th approximation number of T ∈ B(E,F ) is defined by
an(T ) = inf{‖T − S‖ : S ∈ B(E,F ), rank(S) < n}.

The n-th Weyl number of T ∈ B(E,F ) is defined by
xn(T ) = sup{ an(TU) : U ∈ B(`2, E), ‖U‖ ≤ 1}.

For T ∈ B(E,F ), the n-th Weyl number relative to πγ is defined by
xn(T |πγ) = sup{ an(TU) : U ∈ Πγ(`2, E), πγ(U) ≤ 1}.

3. Results
Let us start with the problem which gives a characterization of

Gaussian cotype X operators by means of (X, 2)-summing operators.

Theorem 1. Let 2 ≤ q < ∞ and let X be a Banach sequence
space. An operator T ∈ B(E,F ) is of Gaussian cotype X if and only
if TS ∈ B(`2, F ) is (X, 2)-summing for all S ∈ Πγ(`2, E). In this case
gcn

X(T ) = sup{πn
X,2(TS) : S ∈ Πγ(`2, E), πγ(S) ≤ 1}.
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Proof. Suppose first that T ∈ B(E,F ) is of Gaussian cotype X.
Then given any operator S ∈ Πγ(`2, E) with πγ(S) ≤ 1, we have

‖
n∑
1

‖TSxk‖ ek‖X ≤ gcn
X(T ) · (

∫
Ω

‖
n∑

k=1

gk(ω)Sxk‖2dP (ω))1/2

≤ gcn
X(T ) · πγ(S) · ‖(xk)n

1‖weak
2 ≤ gcn

X(T ) · ‖(xk)n
1‖weak

2

for any vectors x1, · · · , xn in `2.
This assures us that sup{πn

X,2(TS) : S ∈ Πγ(`2, E), πγ(S) ≤ 1} ≤
gcn

X(T ).
For the other implication, we assume that TS ∈ B(`2, F ) is (X, 2)-

summing for all S ∈ Πγ(`2, E). Given any ε > 0, we select vectors
x1, · · · , xn in E such that (

∫
Ω
‖

∑n
k=1 gk(ω)xk‖2dP (ω))1/2 = 1 and

gcn
X(T ) ≤ (1 + ε)‖

∑n
1 ‖Txk‖ek‖X . Define an operator S ∈ B(`n

2 , E)
by S =

∑n
1 ek⊗xk. Since Sek = xk for k = 1, · · · , n, we get πγ(S) = 1.

Our hypothesis guarantees that

‖
n∑
1

‖TSek‖ ek‖X ≤ πn
X,2(TS) · ‖(ek)n

1‖weak
2 ≤ πn

X,2(TS).

Consequently gcn
X(T ) ≤ sup{πn

X,2(TS) : S ∈ Πγ(`2, E), πγ(S) ≤ 1}. �

In the following we find a necessary condition for an operator to be
of Gaussian cotype X.

Theorem 2. Let X be a Banach sequence space. If an operator
T ∈ B(E,F ) is of Gaussian cotype X then (xn(T |πγ)) ∈ X.

Proof. Let S ∈ Πγ(`2, E) with πγ(S) ≤ 1. Since T ∈ B(E,F ) is
of Gaussian cotype X, an appeal to theorem 1 establishes that TS ∈
B(`2, F ) is (X, 2)-summing. From lemma 2.7.1. of [8] we know that for
every ε > 0, there exists an orthonormal family {x1, · · · , xn} in `2 such
that ak(TS) ≤ (1 + ε) ‖TSxk‖ for k = 1, · · · , n. Therefore we have

‖
n∑
1

ak(TS)ek‖X ≤ (1 + ε) ‖
n∑
1

‖TSxk‖ ek‖X

≤ (1 + ε) πX,2(TS) ‖(xk)n
1‖weak

2 = (1 + ε)πX,2(TS).

This yields that (xn(T |πγ)) ∈ X. �
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Next we establish a quotient formula for (X, p)-summing operators,
which is an improvement of the result due to M. Defant and M. Junge
[1].

Lemma 1. Let 1 ≤ r ≤ q < ∞ and let Y be a maximal symmetric
Banach sequence space. If X = M(Y, `q) then for any operator T ∈
B(E,F ) we have

πn
X,r(T ) = sup{πn

q,r(MσRT )|R ∈ B(F, `∞),Mσ ∈ B(`∞, `∞),

‖R‖ ≤ 1, σ ∈ BY }.

Proof. Take any vectors x1, · · · , xn in E. A quick peek at the defini-
tion of ‖(‖Txk‖)n

1‖X ensures that for any ε > 0 there exists a sequence
σ ∈ BY satisfying ‖

∑n
1 ‖Txk‖ek‖X ≤ (1+ε)(

∑n
1 |‖Txk‖σk|q)1/q. Fur-

thermore there is a sequence (y∗k)n
1 in BF∗ with 〈y∗k, Txk〉 = ‖Txk‖ for

k = 1, · · · , n. Define an operator R ∈ B(F, `∞) via R =
∑n

1 y∗k ⊗ ek.
It is obvious that ‖R‖ = 1 and we get

1
1 + ε

‖
n∑
1

‖Txk‖ek‖X ≤ (
n∑
1

|〈y∗k, Txk〉σk|q)1/q

≤ (
n∑
1

‖MσRTxk‖q
∞)1/q ≤ πn

q,r(MσRT ) ‖(xk)n
1‖weak

r .

Hence πn
X,r(T ) ≤ (1+ε)πn

q,r(MσRT ). This gives us the upper estimate.
To obtain the lower estimate we choose a sequence σ ∈ BY and an

operator R ∈ B(F, `∞) with ‖R‖ ≤ 1. It is enough to show that for ev-
ery natural number m with n < m, πn

q,r(PmMσRT ) ≤ πn
X,r(T ), where

Pm =
∑m

1 ek⊗ ek ∈ B(`∞, `m
∞). Taking note of the fact that the (q, r)-

summing norm and the (q′, r′)-nuclear norm are in trace duality we de-
rive that there is an operator S ∈ B(`m

∞, E) such that νq′,r′(S) ≤ 1 and
πn

q,r(PmMσRT ) ≤ (1 + ε) tr(SPmMσRT ). Thanks to Maurey’s result
[1], it is no loss to assume that S =

∑N
1 αkBkMτk P̃k, where (αk)N

1 is a
sequence of positive real numbers with

∑N
1 αk = 1, (mi)n

1 is an increas-
ing sequence in {1, 2, · · ·m}, P̃k =

∑n
1 emi

⊗ ei ∈ B(`m
∞, `n

∞) Mτk ∈
B(`n

∞, `n
r′) with ‖τk‖q′ ≤ 1, Bk ∈ B(`n

r′ , E) with ‖Bk‖ ≤ 1 for k =
1, · · ·N .
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We make use of Hölder’s inequality to obtain that

|tr(BkMτk P̃kPmMσRT )| = |
n∑

j=1

〈Mτk P̃kPmMσRTBk(ej), ej〉|

= |
n∑

j=1

τk
j 〈emj , PmMσRTBk(ej)〉| ≤

n∑
j=1

|τk
j σmj | ‖RTBk(ej)‖

≤ (
n∑

j=1

|τk
j |q

′
)1/q′(

n∑
j=1

(|σmj
| ‖RTBk(ej)‖)q)1/q

≤ ‖
n∑

j=1

‖RTBk(ej)‖ej‖X ‖σ‖Y ≤ πn
X,r(RT ) ‖(Bk(ej))n

j=1‖weak
r

≤ ‖R‖πn
X,r(T ) ‖Bk‖ ≤ πn

X,r(T ).

Hence

tr(SPmMσRT ) ≤
N∑
1

αk |tr(BkMτk P̃kPmMσRT )| ≤ πn
X,r(T ).

This informs us the desired estimate. �

We now turn to the study of the p-convexity of a maximal symmetric
Banach sequence space.

Lemma 2. Let 1 ≤ p < ∞ and let X be a p-convex maximal sym-
metric Banach sequence space. Then there exists a maximal symmetric
Banach sequence space Y such that X = M(Y, `p).

Proof. We set Y = (X+
(p))( 1

p ), where X(p) = {x : |x|1/p ∈ X}. Note

that ‖λ‖Y = ‖|λ|p‖1/p

X+
(p)

= sup{‖λpµ‖1/p
1 : ‖µ‖X(p) ≤ 1} = sup{‖λν‖p :

‖ν‖X ≤ 1} = ‖λ‖M(X,`p). In other words, Y = M(X, `p).
Since ‖στ‖p ≤ ‖σ‖X ‖τ‖M(X,`p) = ‖σ‖X ‖τ‖Y , it follows that

‖σ‖M(Y,`p) ≤ ‖σ‖X .
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On the one hand,

‖σ‖X = ‖σp‖1/p
X(p)

= ‖σp‖1/p

M(X+
(p),`1)

= sup{(
∑

|σk|p|τk|)1/p : ‖τ‖X+
(p)
≤ 1}

≤ ‖σ‖M(Y,`p) sup{ ‖τ1/p‖Y : ‖τ‖X+
(p)
≤ 1}

= ‖σ‖M(Y,`p) sup{‖τ‖1/p

X+
(p)

: ‖τ‖X+
(p)
≤ 1} ≤ ‖σ‖M(Y,`p).

As a consequence X = M(Y, `p).
�

A decisive step toward the proof of the theorem given below is pro-
vided by the following criterion.

Proposition. Let 1 ≤ r < ∞ and let X be a maximal symmetric
Banach sequence space. An operator T from a Banach lattice L to a
Banach space F is (X, r)-concave with KX,r(T ) ≤ C if and only if for
every positive operator S : C(K) → L, the composition TS : C(K) →
F is (X, r)-summing with πX,r(TS) ≤ C · ‖S‖.

Proof. Let S : C(K) → L be any positive operator, and pick
f1, · · · , fn from C(K). Then we have

(
n∑
1

|Sfk|r)1/r = sup{
n∑
1

ak Sfk : ‖a‖r′ ≤ 1}

≤ S(sup{
n∑
1

ak fk : ‖a‖r′ ≤ 1}) = S(
n∑
1

|fk|r)1/r.

Therefore if T : L → F is (X, r)-concave and KX,r(T ) ≤ C then

‖
n∑
1

‖TSfk‖ ek‖X ≤ KX,r(T ) ‖(
n∑
1

|Sfk|r)1/r‖

≤ KX,r(T )‖S‖ ‖(
n∑
1

|fk|r)1/r‖ = KX,r(T )‖S‖ ‖(fk)‖weak
r .
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This signifies that TS is (X, r)-summing with πX,r(TS) ≤ KX,r(T ) ·
‖S‖.

For the converse, take vectors x1, · · · , xn in L. We can assume that
x = (

∑n
1 |xk|r)1/r has norm one. Notice that I(x) = {y ∈ L : |y| ≤

λ · |x| for some 0 < λ < ∞} endowed with the norm ‖y‖∞ = inf{λ >
0 : |y| ≤ λ

‖x‖ · |x| }, y ∈ I(x), can be identified with a space C(K) for a
suitably chosen compact Hausdorff space K. Let J : I(x) = C(K) →
L be the canonical embedding and let T : L → F . In view of our
hypothesis, TJ is (X, r)-summing with πX,r(TJ) ≤ C. Accordingly

‖
n∑
1

‖Txk‖ ek‖X = ‖
n∑
1

‖TJxk‖ek‖X

≤ πX,r(TJ)‖(
n∑
1

|xk|r)1/r‖C(K)

= πX,r(TJ)‖x‖∞ = πX,r(TJ)‖x‖ ≤ C.

This forces that T is (X, r)-concave with KX,r(T ) ≤ C.
�

In the next two theorems we intend to generalize the result of B.
Maurey [5], which is a description of Rademacher cotype q operators,
to the setting of Banach sequence space.

Theorem 3. Let 2 < q < ∞ and let X be a q-convex maximal
symmetric Banach sequence space. The following are equivalent state-
ments about an operator T from a Banach lattice L to a Banach space
F .

(i) T is (X, 1)-summing.
(ii) T is (X, r)-concave for all 1 ≤ r < q.
(iii) T is of Rademacher cotype X.

Proof. (i) ⇒ (ii). By virtue of the hypothesis (i), for any vectors
x1, · · · , xn from L, we have
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‖
n∑
1

‖Txk‖ ek‖X ≤ πn
X,1(T ) ‖(xk)n

1‖weak
1

= πn
X,1(T ) sup{‖

n∑
1

akxk‖ : ‖a‖∞ ≤ 1}

≤ πn
X,1(T )‖ sup{

n∑
1

akxk : ‖a‖∞ ≤ 1}‖ = πn
X,1(T ) ‖

n∑
1

|xk| ‖.

This means that T is (X, 1)-concave with Kn
X,1(T ) ≤ πn

X,1(T ). An
appeal to proposition ensures that for every positive operator S :
C(K) → L, the composition TS : C(K) → F is (X, 1)-summing. The
q-convexity of X enables us to invoke lemma 2 to get that there exists a
maximal symmetric Banach sequence space Y such that X = M(Y, `q).
Taking account of the fact that (q, 1)-summing operators on C(K) are
always (q, r)-summing for 1 ≤ r < q and using lemma 1 we obtain
that TS : C(K) → F is (X, r)-summing. It takes another appeal to
proposition to see that T is (X, r)-concave for all 1 ≤ r < q.

(ii) ⇒ (iii). The hypothesis (ii) indicates that T is (X, 2)-concave. We
apply Khinchin’s inequality to produce that for any vectors x1, · · · , xn

from L,

‖
n∑
1

‖Txk‖ ek‖X ≤ Kn
X,2(T )‖(

n∑
1

|xk|2)1/2‖

≤ C ·Kn
X,2(T ) · (

∫ 1

0

‖
n∑
1

rk(t)xk‖2dt)1/2.

This gives that T is of Rademacher cotype X with rcn
X(T ) ≤ C ·

Kn
X,2(T ).

(iii) ⇒ (i). Using Kahane’s inequality, together with the hypothesis
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(iii), for any vectors x1, · · · , xn from L, we get

‖
n∑
1

‖Txk‖ ek‖X ≤ rcn
X(T )

(∫ 1

0

‖
n∑
1

rk(t)xk‖2dt
)1/2

≤ C rcn
X(T )

(∫ 1

0

‖
n∑
1

rk(t)xk‖dt
)

≤ C rcn
X(T ) sup{‖

∑
εixi‖ : εi = ±1} = C rcn

X(T ) ‖(xk)‖weak
1 .

This ensures that T is (X, 1)-summing with πn
X,1(T ) ≤ C · rcn

X(T ). �

Theorem 4. Let 2 < q < ∞ and let X be a q-convex maximal
symmetric Banach sequence space. An operator T from a Banach
lattice L to a Banach space F is (X, 1)-summing if and only if there is
a constant C such that for all choices of finitely many disjoint vectors
x1, · · · , xn from L, ‖

∑n
1 ‖Txk‖ ek‖X ≤ C · ‖

∑n
1 xk‖.

Proof. Assume first that our condition holds. Let S : C(K) → L be
a positive operator. We select disjointly supported functions f1, · · · , fn

from C(K). The very nature of S assures that Sf1, · · · , Sfn are disjoint
vectors in L, so our hypothesis tells us that

‖
n∑
1

‖TSfk‖ ek‖X ≤ C · ‖
n∑
1

Sfk‖

≤ C · ‖S‖ ‖
n∑
1

fk‖ = C · ‖S‖ ‖(fk)‖weak
1 .

Thus TS : C(K) → F is (X, 1)-summing. It follows from the proof
of theorem 3 that TS : C(K) → F is (X, r)-summing for 1 ≤ r < q.
Proposition permits us to have that T is (X, r)-concave for 1 ≤ r < q.
We use theorem 3 to find that T is (X, 1)-summing.

To pass in the other direction, we suppose that T : L → F is (X, 1)-
summing. Let x1, · · · , xn be disjoint vectors in L. Observe that for
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any choice of εk = ±1, we have

‖
n∑
1

εkxk‖ = ‖ |
n∑
1

εkxk| ‖ = ‖ sup
k≤n

|εkxk| ‖

= ‖ sup
k≤n

|xk| ‖ = ‖ |
n∑
1

xk| ‖ = ‖
n∑
1

xk‖.

We make double use of theorem 3 to ensure that T : L → F is of
Rademacher cotype X, that is,

‖
n∑
1

‖Txk‖ ek‖X ≤ rcn
X(T )

(∫ 1

0

‖
n∑
1

rk(t)xk‖2dt
)1/2

.

Since (
∫ 1

0
‖

∑n
1 rk(t)xk‖2dt)1/2‖ = ‖

∑n
1 xk‖, we arrive at the conclu-

sion. �

In the theorem stated below we establish a result which relates the
Gaussian cotype X operators on C(K) spaces to the Rademacher co-
type X operators on C(K) spaces. For this purpose, we need another
quotient formula.

Lemma 3. Let Y and Z be maximal symmetric Banach sequence
space. If X = M(Y, Z) then for any operator T ∈ B(E,F ) we have

πn
X,1(T ) = sup{πn

Z,1(TRMσ)|R ∈ B(`∞, E),Mσ ∈ B(`∞, `∞),

‖R‖ ≤ 1, σ ∈ BY }.

Proof. Let’s pick any vectors x1, · · · , xn in E such that ‖(xk)‖weak
1 ≤

1. A quick reference to the definition of ‖(‖Txk‖)n
1‖X assures us that

for any ε > 0 there exists a sequence σ ∈ BY for which ‖
∑n

1 ‖Txk‖ek‖X ≤
(1 + ε)‖

∑n
1 ‖Txk‖σkek‖Z . Define an operator R ∈ B(`∞, E) by R =∑n

1 ek ⊗ xk. It is clear that ‖R‖ ≤ 1 and we have

1
1 + ε

‖
n∑
1

‖Txk‖ek‖X ≤ ‖
n∑
1

‖TRMσek‖F ek‖Z

≤ πn
Z,1(TRMσ)‖(ek)‖weak

1 ≤ πn
Z,1(TRMσ)
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Thus πn
X,1(T ) ≤ (1+ε) πn

Z,1(TRMσ). This leads to the upper estimate.
To obtain the lower estimate we select a sequence σ ∈ BY , Mσ ∈

B(`m
∞, `m

∞) and R ∈ B(`m
∞, E) with ‖R‖ ≤ 1. Let S ∈ B(`n

∞, `m
∞) be any

operator with ‖S‖ ≤ 1. Here m > n. Then ‖(Sek)‖weak
1 ≤ 1. A result

due to B. Maurey [1] guarantees that S has the form S =
∑n

1 ek ⊗ gk,
where (gk)n

1 ⊂ `m
∞ with mutually disjoint supports and 0 < ‖gk‖∞ ≤ 1

for k = 1, · · · , n. Define an operator I ∈ B(`n
∞, `m

∞) by I =
∑n

1 ek ⊗
Mσgk

‖Mσgk‖ . Set τ = (‖Mσgk‖∞)n
k=1. Since there is an increasing sequence

(nk)n
k=1 in {1, 2, · · · ,m} such that ‖Mσgk‖∞ = |〈enk

,Mσgk〉|, it follows
that

‖τ‖Y = ‖ (|〈gk, σnk
enk

〉|)n
k=1 ‖Y ≤ ‖

n∑
1

σnk
enk

‖Y ≤ ‖σ‖Y ≤ 1.

Therefore we have

‖
n∑
1

‖TRMσSek‖ek ‖Z = ‖
n∑
1

(‖TRIek‖τk)ek‖Z

≤ ‖
n∑
1

‖TRIek‖ek‖X‖τ‖Y ≤ πn
X,1(T )‖(RIek)‖weak

1

= πn
X,1(T )‖RI‖ ≤ πn

X,1(T ),

and so πn
Z,1(TRMσ) ≤ πn

X,1(T ). This gives us the desired estimate. �

Next we are concerned with the estimation of Gaussian cotype X
norms of an operator on C(K) in terms of (X, 2)-summing norms of
an operator.

Lemma 4. Let X be a maximal symmetric Banach sequence space
and let 1/2 ≤ s < ∞. Then for any operator T ∈ B(C(K), F ) there is
a constant C such that

1
C

gcn
X(T ) ≤ sup{πn

X,2(TRMσ)|R ∈ B(c0, C(K)),Mσ ∈ B(c0, c0),

‖R‖ ≤ 1, ‖σ‖∞,∞,s ≤ 1} ≤ C gcn
X(T ).



76 Hi Ja Song

Proof. Take R ∈ B(c0, C(K)) with ‖R‖ ≤ 1. We set σk = (log(k +
1))−s, k = 1, 2, · · · , so that ‖σ‖∞,∞,s = 1. Since supk σk(log(k +
1))

1
2 < ∞, lemma of [10] steps in to ensure that Mσ, and hence RMσ,

is γ-summing. Then for any vectors x1, · · · , xn in c0, we have

‖
n∑
1

‖TRMσxk‖ ek‖X ≤ gcn
X(T )(

∫
Ω

‖
n∑

k=1

gk(ω)RMσxk‖2dP (ω))1/2

≤ gcn
X(T )πγ(RMσ)‖(xk)n

1‖weak
2 ≤ gcn

X(T )πγ(Mσ)‖(xk)n
1‖weak

2 .

Thus πn
X,2(TRMσ) ≤ gcn

X(T ) πγ(Mσ). This implies the right-hand
inequality.

For the left-hand inequality we choose functions x1, · · · , xn in C(K)
with (

∫
Ω
‖

∑n
k=1 gk(ω)xk‖2dP (ω))1/2 ≤ 1. We invoke Talagrand’s the-

orem [11] to infer that there exist operators U ∈ B(`n
2 , c0) and R ∈

B(c0, C(K)) such that ‖U‖ ≤ C1, ‖R‖ ≤ 1 and RMσUek = xk, where
σk = (log(k + 1))−s, for k = 1, · · · , n. From this we find

‖
n∑
1

‖Txk‖ ek‖X = ‖
n∑
1

‖TRMσUek‖ ek‖X

≤ πn
X,2(TRMσ)‖(Uek)n

1‖weak
2 = πn

X,2(TRMσ)‖U‖.

As a result, gcn
X(T ) ≤ C1 · πn

X,2(TRMσ). This gives us the left-hand
inequality.

�

Having these preliminary results we draw the theorem given below.

Theorem 5. Let 2 < q < ∞ and let X be a q-convex maximal
symmetric Banach sequence space. If Y = M(`∞,∞(log `)s, X), 1

2 ≤
s < ∞, then for any operator T ∈ B(C(K), F ) there is a constant C
such that 1

C rcn
Y (T ) ≤ gcn

X(T ) ≤ C rcn
Y (T ).

Proof. First we observe that q-convexity of X implies the q-convexity
of Y = M(`∞,∞(log `)s, X). For any choice of vectors y1, · · · , yn in Y ,
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we have

‖(
n∑

j=1

|yj |q)1/q‖Y

= sup{‖
∑

k

(
n∑

j=1

|yj(k)|q)1/qσkek‖X : ‖σ‖∞,∞,s ≤ 1}

≤ sup{‖(
n∑

j=1

|
∑

k

yj(k)σkek|q)1/q‖X : ‖σ‖∞,∞,s ≤ 1}

≤ Kq(X) sup{(
n∑

j=1

‖
∑

k

yj(k)σkek‖q
X)1/q : ‖σ‖∞,∞,s ≤ 1}

≤ Kq(X)(
n∑

j=1

‖yj‖q
Y )1/q.

An appeal to lemma 4 in combination with theorem 3 and lemma
3 reveals that gcn

X(T ) and πn
Y,1(T ) are equivalent. It takes another

appeal to theorem 3 to see that πn
Y,1(T ) and rcn

Y (T ) are equivalent.
This completes the proof. �

As an immediate consequence of the preceding theorem we draw
that Gaussian cotype q norms of an operator on C(K) and Rademacher
cotype `q,q(log `)−s norms of an operator on C(K) are equivalent.

Corollary 1. Let 2 < q < ∞ and 1
2 ≤ s < ∞. An operator

T ∈ B(C(K), F ) is of Gaussian cotype q if and only if there is a constant
C such that

(
∑

k

(‖Txk‖(log(k + 1))−s)q)1/q ≤ C · (
∫ 1

0

‖
∑

k

rk(t)xk‖2dt)1/2,

for all sequences (xk) in C(K) with (‖Txk‖) decreasing.



78 Hi Ja Song

Proof. We first note that `q,q(log `)−s = M(`∞,∞(log `)s, `q). For
simplicity write M(`∞,∞(log `)s, `q) = D. From the very definition of
‖ · ‖D it follows that

‖σ‖D = sup{(
∑

k

|σkτk|q)1/q : ‖τ‖∞,∞,s ≤ 1}

≤ sup{supk(log(k+1))sτ∗k (
∑

k

((log(k+1))−sσ∗k)q)1/q : ‖τ‖∞,∞,s ≤ 1}

≤ ‖σ‖q,q,−s.

On the one hand, if we take τk = (log(k + 1))−s, k = 1, 2, · · · then we
have ‖τ‖∞,∞,s = 1 and

‖στ‖q = (
∑

k

((log(k + 1))sτ∗k (log(k + 1))−sσ∗k)q)1/q = ‖σ‖q,q,−s

and so ‖σ‖q,q,−s ≤ ‖σ‖D.
Summoning theorem 5 we discover that T is of Gaussian cotype q

if and only if T is of Rademacher cotype `q,q(log `)−s. This forces our
conclusion.

�

The following corollary is implied by theorem 5 in the case X =
`q,q(log `)s.

Corollary 2. Let 2 < q < ∞ and 1
2 ≤ s < ∞. An operator

T ∈ B(C(K), F ) is of Rademacher cotype q if and only if there is a
constant C such that

(
∑

k

(‖Txk‖ (log(k + 1))s)q)1/q ≤ C · (
∫

Ω

‖
∑

gk(ω)xk‖2dP (ω))1/2,

for all sequences (xk) in C(K) with (‖Txk‖) decreasing.

Proof. We begin with the observation that

`q = M(`∞,∞(log `)s, `q,q(log `)s).
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For brevity write M(`∞,∞(log `)s, `q,q(log `)s) = D. A quick peek at
the definition of ‖ · ‖D indicates that

‖σ‖D = sup { (
∑

k

((σkτk)∗(log(k + 1))s)q)1/q : ‖τ‖∞,∞,s ≤ 1 }

≤ sup { supk(log(k + 1))sτ∗k (
∑

k

(σ∗k)q)1/q : ‖τ‖∞,∞,s ≤ 1} ≤ ‖σ‖q.

On the one hand, if we choose τk = (log(k + 1))−s, k = 1, 2, · · · then
we have ‖τ‖∞,∞,s = 1 and

‖στ‖q,q,s = (
∑

k

((log(k + 1))sσ∗kτ∗k )q)1/q = (
∑

k

(σ∗k)q)1/q = ‖σ‖q,

and hence ‖σ‖q ≤ ‖σ‖D. Theorem 5 steps in to ensure that T is of
Rademacher cotype q if and only if T is of Gaussian cotype `q,q(log `)s.
This yields our conclusion.

�

Theorem 5 permits us to find a necessary condition which implies
that an operator with domain a C(K) space is of Gaussian cotype q.

Corollary 3. Let 2 < q < ∞ and 1
2 ≤ s < ∞. If an opera-

tor T ∈ B(C(K), F ) is of Gaussian cotype q then (
∑

k(xk(T )(log(k +
1))−s)q)1/q < ∞.

Proof. Using first theorem 5 and then theorem 3 we get that T is
(`q,q(log `)−s, 2)-summing because `q,q(log `)−s = M(`∞,∞(log `)s, `q).
For simplicity write Y = `q,q(log `)−s. Take any operator
U ∈ B(`2, C(K)). Lemma 2.7.1. of [8] tells us that for every ε >
0, there exists an orthonormal family {o1, · · · , on} in `2 such that
ak(TU) ≤ (1 + ε)‖TUok‖ for k = 1, · · · , n, where (‖TUok‖) is a de-
creasing sequence. Thus we have

(
n∑
1

(ak(TU) (log(k + 1))−s)q)1/q ≤ (1 + ε) ‖(‖TUok‖)‖q,q,−s

≤ (1 + ε) πY,2(TU) ‖(ok)‖weak
2 ≤ (1 + ε)πY,2(T ) ‖U‖.

So we end up with (
∑

k(xk(T ) (log(k + 1))−s)q)1/q < ∞.
�
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Applying theorem 5 we derive the following description of weak
Gaussian cotype q operators on C(K) spaces in terms of Weyl numbers.

Corollary 4. Let 2 < q < ∞ and 1
2 ≤ s < ∞. An operator T ∈

B(C(K), F ) is of weak Gaussian cotype q if and only if supk k1/q(log(k+
1))−sxk(T ) < ∞.

Proof. We first notice that `q,∞(log `)−s = M(`∞,∞(log `)s, `q,∞).
For simplicity we write M(`∞,∞(log `)s, `q,∞) = D and `q,∞(log `)−s =
Y . The very definition of ‖ · ‖D shows that

‖σ‖D = sup{supkk1/q(σkτk)∗ : ‖τ‖∞,∞,s ≤ 1}

≤ sup{supk(log(k + 1))sτ∗k supkk1/q((log(k + 1))−sσ∗k : ‖τ‖∞,∞,s ≤ 1}
≤ ‖σ‖q,∞,−s.

On the one hand, if we select τk = (log(k +1))−s, k = 1, 2, · · · then we
have ‖τ‖∞,∞,s = 1 and

‖στ‖q,∞ = supkk1/q(σkτk)∗ = supkk1/q(log(k + 1))−sσ∗k = ‖σ‖q,∞,−s,

and thus ‖σ‖q,∞,−s ≤ ‖σ‖D.
Assume that T is of weak Gaussian cotype q, that is T is of Gaussian

cotype `q,∞. We use theorems 5 and 3 to see that T is (`q,∞(log `)−s, 2)-
summing. Take any operator U ∈ B(`2, C(K)). It follows from lemma
2.7.1. of [8] that for every ε > 0, there exists an orthonormal family
{o1, · · · , on} in `2 such that ak(TU) ≤ (1+ ε)‖TUok‖ for k = 1, · · · , n,
where (‖TUok‖) is a decreasing sequence. This leads us to get the
following estimate.

supk≤nk1/q(log(k + 1))−sak(TU) ≤ (1 + ε) ‖(‖TUok‖)n
1‖q,∞,−s

≤ (1 + ε)πY,2(TU)‖(ok)n
1‖weak

2 ≤ (1 + ε)πY,2(T )‖U‖.

This implies that supk k1/q(log(k + 1))−sxk(T ) ≤ πY,2(T ).
Now we proceed to the proof of the other implication. We se-

lect functions x1, · · · , xn in C(K), satisfying ‖(xk)‖weak
2 ≤ 1. As-

sume that (‖Txk‖) is a decreasing sequence. If we define an operator
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Un ∈ B(`n
2 , C(K)) by Un =

∑n
1 ek ⊗ xk then ‖Un‖ = ‖(xk)‖weak

2 ≤ 1.
König’s inequality allows us to have

n1/2 ‖Txn‖ ≤ (
n∑
1

‖Txk‖2)1/2 = (
n∑
1

‖TUnek‖2)1/2

≤ π2(TUn) ≤ C
n∑
1

k−1/2 ak(TUn)

= C
n∑
1

(log(k + 1))sk−1/2−1/q k1/q(log(k + 1))−sxk(T )‖Un‖

≤ C (log(n + 1))s 1
1/2− 1/q

n1/2−1/q sup k1/q(log(k + 1))−sxk(T ),

and so

n1/q(log(n + 1))−s‖Txn‖ ≤ C
1

1/2− 1/q
sup k1/q(log(k + 1))−sxk(T ).

This guarantees that T is (`q,∞(log `)−s, 2)-summing. We utilize theo-
rems 3 and 5 one more time to conclude that T is of Gaussian cotype
`q,∞.

�
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