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DENSITY OF
D-SHADOWING DYNAMICAL

SYSTEM

J. M. Kim and S. G. Kim

Abstract. In this paper, we give the notion of the D−shadowing

property, D− inverse shadowing property for dynamical systems.

and investigate the density of D−shadowing dynamical systems and
the D−inverse shadowing dynamical systems. Moreover we study

some relationships between the D−shadowing property and other

dynamical properties such as expansivity and topological stability.

1. Introduction

In this paper, we introduce the notion of the D−shadowing prop-
erty [resp. D−inverse shadowing property] which is a generalization of
that of shadowing property [resp. inverse shadowing property] in the-
ory of dynamical systems, and investigate the density of D−shadowing
dynamical systems and the D−inverse shadowing dynamical systems.
Moreover we study some relationships between theD−shadowing prop-
erty and other dynamical properties such as expansivity and topologi-
cal stability.

The shadowing property, which is also well known as the pseudo
orbit tracing property, is one of the interesting concepts in the quali-
tative theory of dynamical systems. The notion of shadowing property
of a dynamical system is used to justify the validity of computer simu-
lations of the system, asserting that there is a true orbit of the system
close to the computed orbit. Many people have studied the relations
between the shadowing property and the classical notions in the qual-
itative theory of dynamical systems.
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2. Preliminaries

In this section, we give the definitions of the basic concepts which
are needed in section 3. Let X be a compact metric space with a
metric d, and let Z stands for the set of integers and R be the set of
real numbers.

Throughout the paper, we denote Z(X) by the set of all homeomor-
phisms on X with the C0-metric: for any f, g ∈ Z(X),

d0(f, g) = sup{d(f(x), g(x)) : x ∈ X}.

Definition 2.1. A dynamical system(or flow) on X is the triple
(X,R, F ), where F is a continuous map from the product space X ×R
into the space X satisfying the following axioms :

(1) F (x, 0) = x (identity axiom)
(2) F (F (x, s), t) = F (x, s+ t) (group axiom)

for every x ∈ X and s, t ∈ R. We say that the triple (X,Z, F ) which
satisfy the above properties (1) and (2) is a (discrete) dynamical sys-
tem.

Remarks 2.2. Let (X,Z, F ) be a (discrete) dynamical system. Then
it is easy to show that the map f : X → X defined by

f(x) = F (x, 1) for all x ∈ X

is homeomorphism on X. Conversely, let f : X → X be a homeomor-
phism and define a map

F (x, n) = fn(x) = f ◦ · · · ◦ f(x) (n− times)

for all n ∈ Z and x ∈ X. Then it is not hard to show that (X,Z, F ) is a
discrete dynamical system on X. Consequently we identify the homeo-
morphism f with the discrete dynamical system F which it generates.

Let (X,R, F ) be a flow on X. For each t ∈ R, the map Ft : X → X
defined by Ft(x) = F (x, t) is a homeomorphism on X which is call the
time t-map of F .
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Definition 2.3. Let f ∈ Z(X) and x ∈ X. The set

O(f, x) = {fn(x) : n ∈ Z}

is said to be the orbit of f through x ∈ X.

Definition 2.4. Let δ > 0 be an arbitrary number. A δ-pseudo
orbit of f is a sequence of points ξ = {xn ∈ X : n ∈ Z} such that

d(f(xn), xn+1) < δ

for all n ∈ Z.

The notion of a pseudo orbit plays an important role in the general
qualitative theory of dynamical systems. Usually, a δ-pseudo orbit is a
natural model of computer output in a process of numerical investiga-
tion of the dynamical system f in X. In this case, the value δ measures
one step errors of the method and round-off errors. It is also used to
define some types of invariant sets such as the chain recurrent set or
chain prolongation sets(see [5], [6], [11]).

Definition 2.5. We say that a pseudo orbit ξ = {xn ∈ X : n ∈ Z}
is δ-shadowed by a point x ∈ X if the inequality

d(fn(x), xn)) < δ

for all n ∈ Z, holds.

Thus the existence of a shadowing point for a pseudo orbit ξ means
that ξ is close to a real orbit of f .

Definition 2.6. A homeomorphism f ∈ Z(X) is said to have the
shadowing property (or the pseudo orbit tracing property) if for every
ε > 0 there exists δ > 0 such that any δ-pseudo orbit {xn}n∈Z in X is
epsilon-shadowed by some point x ∈ X : i.e.,

d(fn(x), xn) ≤ ε

for all n ∈ Z.
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Definition 2.7. A dynamical system f ∈ Z(X) is said to have the
H-shadowing property if for every ε > 0 there exists δ > 0 such that if
d0(f, g) < δ for every g ∈ Z(X), then any g-orbit is ε-shadowed by a
f -orbit : for every x ∈ X, there exists x0 ∈ X such that

d(fn(x0), gn(x)) ≤ ε

for all n ∈ Z.

The theory of shadowing was developed intensively in recent years
and became a significant part of the qualitative theory of dynamical
systems containing a lot of interesting and deep results (see [8]).

Definition 2.8. A homeomorphism f ∈ Z(X) is said to be expan-
sive if there is a constant e > 0 such that if

d(fn(x), fn(y)) ≤ e

for all n ∈ Z, then x = y. Such a number e is called an expansive
constant of f .

Definition 2.9. A homeomorphism f ∈ Z(X) is said to be topo-
logically stable if for any ε > 0 there exists δ > 0 such that if d0(f, g) <
δ, g ∈ Z(X), then there is a continuous surjection h : X → X with
f ◦ h = h ◦ f and d0(h, IX) < ε, where IX : X → X stands for the
identity homeomorphism. The map h is called a semiconjugacy from
f to g .

Remarks 2.10. It is well known that if M is a compact smooth man-
ifold and f ∈ Z(M) is topologically stable then it has the shadowing
property. Moreover, it was proved that if f ∈ Z(M)) is an expansive
homeomorphism which has the shadowing property then it is topolog-
ically stable.

However, the above results do not hold in general if M is not com-
pact smooth manifold.

3. Density of D−Shadowing Dynamical Systems

In this section, we introduce the notion of D−shadowing property
and D−inverse shadowing property for dynamical systems and study
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some relationships between the D−shadowing property and other dy-
namical properties such as shadowing property, expansivity and topo-
logical stability.

Recently Diamond et al ([2]) obtained a necessary and sufficient con-
dition under which a homeomorphism on a compact smooth manifold
has the shadowing property. Let M be a compact smooth manifold. A
homeomorphism f on M has the shadowing property if and only if f
has the H-shadowing property. This theorem can be used to motivate
the notion of another shadowing property for dynamical systems on
metric spaces as follows.

Definition 3.1. Let D be a subset of Z(X). Then a dynamical
system f ∈ Z(X) is said to have the D−shadowing property if for
every ε > 0 there exists δ > 0 such that if d0(f, g) < δ for g ∈ D, then
any g-orbit is ε-shadowed by a f -orbit : i.e., for every x ∈ X, there
exists x0 ∈ X such that

d(f
n(x0), gn(x)) ≤ ε

for all n ∈ Z.

Definition 3.2. Let D be a subset of Z(X). Then a dynamical
system f ∈ Z(X) is said to have the D−inverse shadowing property if
for every ε > 0 there exists δ > 0 such that if d0(f, g) < δ for g ∈ D,
then any f -orbit is ε-shadowed by a g-orbit : i.e., for every x ∈ X,
there exists x0 ∈ X such that

d(fn(x), gn(x0)) ≤ ε

for all n ∈ Z.

Remarks 3.3. If f ∈ Z(X) is a homeomorphism with d0(f, g) < δ,
that is g is a small perturbation of f , then we can see that every g-orbit
O(g, x) = {gn(x) : n ∈ Z} is δ-pseudo orbit of f . In fact we have

d(f(gn(x)), gn+1(x)) ≤ δ

for all in n ∈ Z.
If Z(X) = D, then the D−shadowing property is equal the H-

shadowing property. If there is no g ∈ D with d0(f, g) < δ, then we
say that f has the D−shadowing property.
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Let M be a compact manifold with a metric d, and let M∗ be the
space of nonempty closed subsets of M with the Hausdorff metric d̄:
i.e., for any A,B ∈M∗,

d̄(A,B) = max{sup{d(a,B) : a ∈ A}, sup{d(A, b) : b ∈ B}},

where d(a,B) = inf{d(a, b) : b ∈ B}. Then M∗ become a compact
metric space. Let M∗∗ be the set of all nonempty closed subsets of M∗

with the Hausdorff metric dH .
Fix a system f ∈ Z(M) and a point x ∈M0. The set O(f, x) is an

element of M . We define the map

Θ : Z(M) →M∗∗

by θ(f){O(f, x) : x ∈M}.
A dynamical system f ∈ Z(M) is tolerance stable if the map

Θ : Z(M) →M∗∗

is continuous at f (see [10]). A map h : M → M∗ is said to be upper
(or lower) semi-continuous at x ∈ M if for any ε > 0 there exists a
neighborhood U of x such that for any z ∈ U we have

h(z) ⊂ Bε(h(x)) ( or h(x) ⊂ Bε(h(z)))

respectively, where Bε(A) = {z ∈ M : d(x, z) < ε for some x ∈ A}. A
map h : M → M∗ is continuous at x ∈ M if and only if h is upper
and lower semicontinuous at x (see [7]). Then we can get the following
theorem.

Theorem 3.4. The restriction Θ|D : D →M∗∗ is continuous at f if
f has the D−shadowing property and D−inverse shadowing property.

Proof. Let D be a subset of Z(M), and it ε > 0 be arbitrary. Since
f has the D−shadowing property and D−inverse shadowing property,
we can choose δ > 0 such that if d0(f, g) < δ and x ∈M , then

d(fn(x0), gn(x)) ≤ ε

3
and d(fn(x), gn(y0)) ≤

ε

3
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for some x0, y0 ∈M and all n ∈ Z. The proof is completed by showing
that Θ(g) ⊂ Bε(Θ(f)) and Θ(f) ⊂ Bε(Θ(g)), where Bε(Θ(f)) = {A ∈
M∗ : d̄(A,B) < ε for some B ∈ Θ(f)}.

First we show that Θ(g) ⊂ Bε(Θ(f)). Let A ∈ Θ(g). Then there
exists x ∈ M such that d(A,O(g, x)) < ε

2 . For the point x ∈ M , we
select x0 ∈M satisfying

d(fn(x0), gn(x)) ≤ ε

3

for all n ∈ Z. then we have d(O(f, x0), O(g, x)) < ε
2 , and so

d̄(A,O(f, x0)) < ε.

This means that Θ(g) ⊂ Bε(Θ(f)), and hence the map Θ is upper
semicontinuous at f .

Next we show that Θ(f) ⊂ Bε(Θ(g)). Let A ∈ Θ(f). Then there
exists x ∈ M such that d̄(A, ¯O(f, x)) < ε

2 . For the point x ∈ M , we
select y0 ∈M satisfying

d(fn(x), gn(y0)) ≤
ε

3

for all n ∈ Z. then we have d̄( ¯O(f, x), ¯O(g, y0)) < ε
2 , and so

d̄(A, ¯O(g, y0)) < ε.

This means that the map Θ is lower semicontinuous at f . Hence the
map Θ is continuous at f . �

Tolerance Stability Conjecture : Let M be a compact manifold. For
any Γ-set D of Z(M), there exists a residual set D0 ⊂ D such that
every f ∈ D0 is tolerance D−stable : i.e.

Θ|D : D →M∗∗

is continuous at every point of D0.

Definition 3.5. A subset D of Z(M) is called a Γ-set if D has a
topology which is finer than the subspace topology on D ⊂ Z(M).
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Example 3.6. The set of Cr-diffeomorphisms on M , Diffr(M)
with the Cr topology (r ≥ 1) is a Γ-set.

Question 3.7. For any Γ-set D of Z(M), is there a residual set
D0 ⊂ D such that every f ∈ D0 is D-shadowing property or D-inverse
shadowing property ?

As a partial answer, we have the following theorem.

Theorem 3.8. Let M be a compact two dimensional space. Then
there exists Γ-sets D, D1 and D2 in Z(M) such that :

(1) D1 and D2 are dense in D, and D is the disjoint union of D1

and D2 ; i.e. D1 ∩D1 = ∅, D1 ∪D1 = D.
(2) Every element f ∈ D1 does not have theD-shadowing property.
(3) Every element f ∈ D2 does not have the D-inverse shadowing

property.

Proof. Let M be a two dimensional space, and identify a coordinate
neighborhood of M with R2. The set of flows we construct will have
support in R2, so we forget the rest of M .

Set

A0 = {(x, y) : 0 ≤ x ≤ 5, 0 ≤ y ≤ 1},
A1 = {(x, y) : 2 ≤ x ≤ 3, 0 ≤ y ≤ 1}, and

A2 = (R2 − IntA0) ∪ {(i,
1
n

) : i = 1 or 4, n = 1, 2, }.

Let E : R2 → TR2 be the unit constant vector field, and let d be
the usual metric on R2 . Define F to be the set of flows generated by
vector fields X on R2 which satisfy the following conditions:

(1) Xp = d(p,A2) for p /∈ IntA1

(2) there is a homeomorphism h : A1 → A1 such that h is the
identity map on [2, 3]× {0, 1}, h([2, 3]× r) is an integral curve
of X|A1 for each r ∈ (0, 1). See the following figure :
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with d0(f, g) < δ and x ∈M such that for every x0 ∈M ,

d(gn(x), fn(x0)) ≥ ε

for some n ∈ Z. i.e. for any δ−trajectory ξ = {gn(x) : n ∈ Z} of f is
not ε−shadowed by f−orbit and any point of M . This means that f
does not have the D−shadowing property.

Finally we claim that every element f ∈ D2 does not have the
D−inverse shadowing property : Let ε = 1

2 . For any δ > 0, there
exists g ∈ D1 with d0(f, g) < δ and x ∈M such that for every x0 ∈M ,

d(gn(x0), fn(x)) ≥ ε

for some n ∈ Z. i.e. for any δ−trajectory ξ = {fn(x) : n ∈ Z} of
g is not ε-shadowed by any point of M . This means that f does not
have the D−inverse shadowing property. Consequently we complete
the proof of the theorem. �
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