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QUASI-SMOOTH α-STRUCTURE OF
SMOOTH TOPOLOGICAL SPACES

Won Keun Min and Chun-Kee Park*

Abstract. We introduce the concepts of weak smooth α-closure
and weak smooth α-interior of a fuzzy set and obtain some of their
structural properties. We also introduce the concepts of several
types of quasi-smooth α- compactness in terms of the concepts of
weak smooth α-closure and weak smooth α-interior of a fuzzy set
and investigate some of their properties.

1. Introduction

Badard [1] introduced the concept of a smooth topological space
which is a generalization of Chang’s fuzzy topological space [2]. Many
mathematical structures in smooth topological spaces were introduced
and studied. In particular, Gayyar, Kerre , Ramadan [5] and Demirci
[3, 4] introduced the concepts of smooth closure and smooth interior
of a fuzzy set and several types of compactness in smooth topological
spaces and obtained some of their properties. In [6] we introduced
the concepts of smooth α-closure and smooth α-interior of a fuzzy
set which are generalizations of smooth closure and smooth interior
of a fuzzy set defined in [3] and also introduced several types of α-
compactness in smooth topological spaces and obtained some of their
properties.

In this paper, we introduce the concepts of weak smooth α-closure
and weak smooth α-interior of a fuzzy set and obtain some of their
structural properties. We also introduce the concepts of several types of
quasi-smooth α- compactness in terms of the concepts of weak smooth
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α-closure and weak smooth α-interior of a fuzzy set and investigate
some of their properties.

2. Preliminaries

Let X be a set and I = [0, 1] be the unit interval of the real line.
IX will denote the set of all fuzzy sets of X. 0X and 1X will denote
the characteristic functions of φ and X, respectively.

A smooth topological space (s.t.s.) [7] is an ordered pair (X, τ),
where X is a non-empty set and τ : IX → I is a mapping satisfying
the following conditions:

(O1) τ(0X) = τ(1X) = 1;
(O2) ∀A,B ∈ IX , τ(A ∩B) ≥ τ(A) ∧ τ(B);
(O3) for every subfamily {Ai : i ∈ J} ⊆ IX ,

τ(∪i∈J Ai) ≥ ∧i∈J τ(Ai).

Then the mapping τ : IX → I is called a smooth topology on X. The
number τ(A) is called the degree of openness of A.

A mapping τ∗ : IX → I is called a smooth cotopology [7] iff the
following three conditions are satisfied:

(C1) τ∗(0X) = τ∗(1X) = 1;
(C2) ∀A,B ∈ IX , τ∗(A ∪B) ≥ τ∗(A) ∧ τ∗(B);
(C3) for every subfamily {Ai : i ∈ J} ⊆ IX , τ∗(∩i∈J Ai) ≥

∧i∈J τ∗(Ai).
If τ is a smooth topology on X, then the mapping τ∗ : IX → I,

defined by τ∗(A) = τ(Ac) where Ac denotes the complement of A, is
a smooth cotopology on X. Conversely, if τ∗ is a smooth cotopology
on X, then the mapping τ : IX → I, defined by τ(A) = τ∗(Ac), is a
smooth topology on X [7].

For the s.t.s. (X, τ) and α ∈ [0, 1], the family τα = {A ∈ IX :
τ(A) ≥ α} defines a Chang’s fuzzy topology (CFT) on X [2]. The
family of all closed fuzzy sets with respect to τα is denoted by τ∗α and
we have τ∗α = {A ∈ IX : τ∗(A) ≥ α}. For A ∈ IX and α ∈ [0, 1], the
τα-closure (resp., τα-interior) of A, denoted by clα(A) (resp., intα(A)),
is defined by clα(A) = ∩{K ∈ τ∗α : A ⊆ K} (resp., intα(A) = ∪{K ∈
τα : K ⊆ A}).
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Demirci [3] introduced the concepts of smooth closure and smooth
interior in smooth topological spaces as follows:

Let (X, τ) be a s.t.s. and A ∈ IX . Then the τ -smooth closure
(resp., τ -smooth interior) of A, denoted by A (resp., Ao), is defined by
A = ∩{K ∈ IX : τ∗(K) > 0, A ⊆ K} (resp., Ao = ∪{K ∈ IX : τ(K) >
0, K ⊆ A}).

Let (X, τ) and (Y, σ) be two smooth topological spaces. A function
f : X → Y is called smooth continuous with respect to τ and σ [7]
iff τ(f−1(A)) ≥ σ(A) for every A ∈ IY . A function f : X → Y
is called weakly smooth continuous with respect to τ and σ [7] iff
σ(A) > 0 ⇒ τ(f−1(A)) > 0 for every A ∈ IY . In this paper, a
weakly smooth continuous function is called a quasi-smooth continuous
function.

A function f : X → Y is smooth continuous with respect to τ and
σ iff τ∗(f−1(A)) ≥ σ∗(A) for every A ∈ IY . A function f : X → Y
is weakly smooth continuous with respect to τ and σ iff σ∗(A) > 0 ⇒
τ∗(f−1(A)) > 0 for every A ∈ IY [7].

A function f : X → Y is called smooth open (resp., smooth closed)
with respect to τ and σ [7] if and only if τ(A) ≤ σ(f(A))
(resp., τ∗(A) ≤ σ∗(f(A))) for every A ∈ IX .

A function f : X → Y is called smooth preserving (resp., strict
smooth preserving) with respect to τ and σ [5] if and only if σ(A) ≥
σ(B) ⇔ τ(f−1(A)) ≥ τ(f−1(B))
(resp., σ(A) > σ(B) ⇔ τ(f−1(A)) > τ(f−1(B))) for every A,B ∈ IY .

If f : X → Y is a smooth preserving function (resp., a strict smooth
preserving function) with respect to τ and σ, then σ∗(A) ≥ σ∗(B) ⇔
τ∗(f−1(A)) ≥ τ∗(f−1(B)) (resp., σ∗(A) > σ∗(B) ⇔ τ∗(f−1(A)) >
τ∗(f−1(B))) for every A,B ∈ IY [5].

A function f : X → Y is called smooth open preserving (resp., strict
smooth open preserving) with respect to τ and σ [5] iff τ(A) ≥ τ(B) ⇒
σ(f(A)) ≥ σ(f(B)) (resp., τ(A) > τ(B) ⇒ σ(f(A)) > σ(f(B))) for
every A,B ∈ IX .

3. Weak smooth α-closure and weak smooth α-interior

In this section, we introduce the concepts of weak smooth α-closure
and weak smooth α-interior of a fuzzy set in smooth topological spaces
and investigate some of their properties.
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Definition 3.1[6]. Let (X, τ) be a s.t.s., α ∈ [0, 1) and A ∈ IX .
The τ -smooth α-closure (resp., τ -smooth α-interior) of A, denoted by
Aα (resp., Ao

α), is defined by Aα = ∩{K ∈ IX : τ∗(K) > ατ∗(A), A ⊆
K} (resp., Ao

α = ∪{K ∈ IX : τ(K) > ατ(A),K ⊆ A}).
Demirci [4] defined the families W (τ) = {A ∈ IX : A = Ao} and

W ∗(τ) = {A ∈ IX : A = A}, where (X, τ) is a s.t.s. Note that
A ∈ W (τ) ⇔ Ac ∈ W ∗(τ).

We define the families Wα(τ) = {A ∈ IX : A = Ao
α} and W ∗

α(τ) =
{A ∈ IX : A = Aα}, where (X, τ) is a s.t.s. and α ∈ [0, 1). Note that
A ∈ Wα(τ) ⇔ Ac ∈ W ∗

α(τ).

Definition 3.2. Let (X, τ) be a s.t.s., α ∈ [0, 1) and A ∈ IX .
The weak τ -smooth α-closure (resp., weak τ -smooth α-interior) of A,
denoted by wclα(A) (resp., wintα(A)), is defined by wclα(A) = ∩{K ∈
IX : K ∈ W ∗

α(τ), A ⊆ K} (resp., wintα(A) = ∪{K ∈ IX : K ∈
Wα(τ), K ⊆ A}).

Theorem 3.3. Let (X, τ) be a s.t.s., α ∈ [0, 1) and A ∈ IX . Then
(a) A ⊆ wclα(A) ⊆ A ⊆ Aα,
(b) Ao

α ⊆ Ao ⊆ wintα(A) ⊆ A.

Proof. (a) Let K ∈ IX and A ⊆ K. Then τ∗(K) > ατ∗(A) ⇒
τ∗(K) > 0 and τ∗(K) > 0 ⇒ K = Kα, i.e., K ∈ W ∗

α(τ) by The-
orem 3.6[6]. From the definitions of Aα, A and wclα(A) we have
A ⊆ wclα(A) ⊆ A ⊆ Aα.

(b) Let K ∈ IX and K ⊆ A. Then τ(K) > ατ(A) ⇒ τ(K) > 0 and
τ(K) > 0 ⇒ K = Ko

α, i.e., K ∈ Wα(τ) by Theorem 3.6[6]. From the
definition of Ao

α, Ao and wintα(A) we have Ao
α ⊆ Ao ⊆ wintα(A) ⊆ A.

¤

Theorem 3.4. Let (X, τ) be a s.t.s., α ∈ [0, 1) and A,B ∈ IX .
Then

(a) A ⊆ B ⇒ wclα(A) ⊆ wclα(B),
(b) A ⊆ B ⇒ wintα(A) ⊆ wintα(B),
(c) (wclα(A))c = wintα(Ac),
(d) wclα(A) = (wintα(Ac))c,
(e) (wintα(A))c = wclα(Ac),
(f) wintα(A) = (wclα(Ac))c.
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Proof. (a) and (b) follow directly from Definition 3.2.
(c) From Definition 3.2 we have

(wclα(A))c = (∩{K ∈ IX : K ∈ W ∗
α(τ), A ⊆ K})c

= ∪{Kc : K ∈ IX , Kc ∈ Wα(τ),Kc ⊆ Ac}
= ∪{U ∈ IX : U ∈ Wα(τ), U ⊆ Ac}
= wintα(Ac).

(d), (e) and (f) can be easily obtained from (c).
¤

Theorem 3.5. Let (X, τ) be a s.t.s., α ∈ [0, 1) and A,B ∈ IX .
Then

(a) wclα(0X) = 0X ,
(b) A ⊆ wclα(A),
(c) wclα(A) = wclα(wclα(A)),
(d) wclα(A) ∪ wclα(B) ⊆ wclα(A ∪B),
(e) wclα(A ∩B) ⊆ wclα(A) ∩ wclα(B).

Proof. (a) By Theorem 3.4[6], (0X)α = 0X , i.e., 0X ∈ W ∗
α(τ). From

Definition 3.2 we have wclα(0X) = 0X .
(b) follows directly from Definition 3.2.
(c) From (b) we have wclα(A) ⊆ wclα(wclα(A)). From Definition

3.2 we have

wclα(wclα(A)) = ∩{K ∈ IX : K ∈ W ∗
α(τ), wclα(A) ⊆ K}

= ∩{K ∈ IX : K ∈ W ∗
α(τ),∩{U ∈ IX : U ∈ W ∗

α(τ),

A ⊆ U} ⊆ K}
⊆ ∩{K ∈ IX : K ∈ W ∗

α(τ), A ⊆ K}
= wclα(A).

Hence wclα(A) = wclα(wclα(A)).
(d) Since A ⊆ A ∪ B and B ⊆ A ∪ B, wclα(A) ⊆ wclα(A ∪ B) and

wclα(B) ⊆ wclα(A∪B) by Theorem 3.4. Hence wclα(A)∪wclα(B) ⊆
wclα(A ∪B).



228 Won Keun Min and Chun-Kee Park

(e) Since A ∩ B ⊆ A and A ∩ B ⊆ B, wclα(A ∩ B) ⊆ wclα(A)
and wclα(A ∩ B) ⊆ wclα(B) by Theorem 3.4. Hence wclα(A ∩ B) ⊆
wclα(A) ∩ wclα(B).

¤

Theorem 3.6. Let (X, τ) be a s.t.s., α ∈ [0, 1) and A,B ∈ IX .
Then

(a) wintα(1X) = 1X ,
(b) wintα(A) ⊆ A,
(c) wintα(A) = wintα(wintα(A)),
(d) wintα(A) ∪ wintα(B) ⊆ wintα(A ∪B),
(e) wintα(A ∩B) ⊆ wintα(A) ∩ wintα(B).

Proof. The proof is similar to the proof of Theorem 3.5.
¤

Theorem 3.7. Let (X, τ) be a s.t.s., α ∈ [0, 1) and A ∈ IX . Then

(a) τ∗(A) > 0 ⇒ wclα(A) = A,
(b) τ(A) > 0 ⇒ wintα(A) = A.

Proof. Let τ∗(A) > 0. Then Aα = A, i.e., A ∈ W ∗
α(τ) by Theorem

3.6[6]. Hence A ∈ {K ∈ IX : K ∈ W ∗
α(τ), A ⊆ K}. By Definition 3.2,

wclα(A) ⊆ A. By Theorem 3.3, A ⊆ wclα(A). Hence wclα(A) = A.
(b) Let τ(A) > 0. Then Ao

α = A, i.e., A ∈ Wα(τ) by Theorem
3.6[6]. Hence A ∈ {K ∈ IX : K ∈ Wα(τ),K ⊆ A}. By Definition 3.2,
A ⊆ wintα(A). By Theorem 3.3, wintα(A) ⊆ A. Hence wintα(A) = A.

¤

Theorem 3.8. Let (X, τ) be a s.t.s., α ∈ [0, 1) and A ∈ IX . Then

(a) if there exists a β ∈ (ατ∗(A), 1] such that A = clβ(A), then

A = wclα(A) = A = Aα,

(b) if there exists a β ∈ (ατ(A), 1] such that A = intβ(A), then
A = wintα(A) = Ao = Ao

α.
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Proof. (a) If there exists a β ∈ (ατ∗(A), 1] such that A = clβ(A),
then A ⊆ wclα(A) ⊆ A ⊆ Aα = ∩β>ατ∗(A) clβ(A) ⊆ clβ(A) = A by
Theorem 3.8[6] and 3.3. Hence A = wclα(A) = A = Aα.

(b) If there exists a β ∈ (ατ(A), 1] such that A = intβ(A), then
A = intβ(A) ⊆ ∪β>ατ(A) intβ(A) = Ao

α ⊆ Ao ⊆ wintα(A) ⊆ A by
Theorem 3.8[6] and 3.3. Hence A = wintα(A) = Ao = Ao

α.
¤

Definition 3.9. Let (X, τ) and (Y, σ) be two smooth topological
spaces and let α ∈ [0, 1). A function f : X → Y is called weak smooth
α-continuous with respect to τ and σ iff A ∈ Wα(σ) ⇒ f−1(A) ∈
Wα(τ) for every A ∈ IY .

Theorem 3.10. Let (X, τ) and (Y, σ) be two smooth topological
spaces and let α ∈ [0, 1). If a function f : X → Y is weak smooth
α-continuous with respect to τ and σ, then

(a) f(wclα(A)) ⊆ wclα(f(A)) for every A ∈ IX ,
(b) wclα(f−1(A)) ⊆ f−1(wclα(A)) for every A ∈ IY ,
(c) f−1(wintα(A)) ⊆ wintα(f−1(A)) for every A ∈ IY .

Proof. (a) For every A ∈ IX , we have

f−1(wclα(f(A))) = f−1(∩{U ∈ IY : U ∈ W ∗
α(σ), f(A) ⊆ U})

⊇ f−1(∩{U ∈ IY : f−1(U) ∈ W ∗
α(τ), A ⊆ f−1(U)})

= ∩{f−1(U) ∈ IX : U ∈ IY , f−1(U) ∈ W ∗
α(τ), A ⊆ f−1(U)}

⊇ ∩{K ∈ IX : K ∈ W ∗
α(τ), A ⊆ K}

= wclα(A).

Hence f(wclα(A)) ⊆ wclα(f(A)).
(b) For every A ∈ IY , we have

f−1(wclα(A)) = f−1(∩{U ∈ IY : U ∈ W ∗
α(σ), A ⊆ U})

⊇ f−1(∩{U ∈ IY : f−1(U) ∈ W ∗
α(τ), f−1(A) ⊆ f−1(U)})

= ∩{f−1(U) ∈ IX : U ∈ IY , f−1(U) ∈ W ∗
α(τ),

f−1(A) ⊆ f−1(U)}
⊇ ∩{K ∈ IX : K ∈ W ∗

α(τ), f−1(A) ⊆ K}
= wclα(f−1(A)).
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(c) For every A ∈ IY , we have

f−1(wintα(A)) = f−1(∪{U ∈ IY : U ∈ Wα(σ), U ⊆ A})
⊆ f−1(∪{U ∈ IY : f−1(U) ∈ Wα(τ), f−1(U) ⊆ f−1(A)})
= ∪{f−1(U) ∈ IX : U ∈ IY , f−1(U) ∈ Wα(τ),

f−1(U) ⊆ f−1(A)}
⊆ ∪{K ∈ IX : K ∈ Wα(τ), K ⊆ f−1(A)}
= wintα(f−1(A)).

¤

Definition 3.11. Let (X, τ) and (Y, σ) be two smooth topological
spaces and let α ∈ [0, 1). A function f : X → Y is called weak
smooth α-open (resp., weak smooth α-closed) with respect to τ and σ
iff A ∈ Wα(τ) ⇒ f(A) ∈ Wα(σ) (resp., A ∈ W ∗

α(τ) ⇒ f(A) ∈ W ∗
α(σ))

for every A ∈ IX .

Theorem 3.12. Let (X, τ) and (Y, σ) be two smooth topological
spaces and let α ∈ [0, 1). If a function f : X → Y is weak smooth
α-open with respect to τ and σ, then f(wintα(A)) ⊆ wintα(f(A)) for
every A ∈ IX .

Proof. For every A ∈ IX , we have

f(wintα(A)) = f(∪{U ∈ IX : U ∈ Wα(τ), U ⊆ A})
⊆ f(∪{U ∈ IX : f(U) ∈ Wα(σ), f(U) ⊆ f(A)})
= ∪{f(U) ∈ IY : U ∈ IX , f(U) ∈ Wα(σ), f(U) ⊆ f(A)}
⊆ ∪{K ∈ IY : K ∈ Wα(σ),K ⊆ f(A)}
= wintα(f(A)).

¤
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4. Several types of quasi-smooth α-compactness

In this section, we introduce the concepts of several types of quasi-
smooth α-compactness in smooth topological spaces and investigate
some of their properties.

Definition 4.1. Let α ∈ [0, 1). A s.t.s. (X, τ) is called quasi-
smooth nearly α-compact iff for every family {Ai : i ∈ J} in {A ∈ IX :
τ(A) > 0} covering X, there exists a finite subset J0 of J such that
∪i∈J0wintα(wclα(Ai)) = 1X .

Definition 4.2. Let α ∈ [0, 1). A s.t.s. (X, τ) is called quasi-
smooth almost α-compact iff for every family {Ai : i ∈ J} in {A ∈
IX : τ(A) > 0} covering X, there exists a finite subset J0 of J such
that ∪i∈J0wclα(Ai) = 1X .

Definition 4.3[3]. A s.t.s. (X, τ) is called smooth compact iff for
every family {Ai : i ∈ J} in {A ∈ IX : τ(A) > 0} covering X, there
exists a finite subset J0 of J such that ∪i∈J0Ai = 1X .

Definition 4.4[3]. A s.t.s. (X, τ) is called smooth nearly compact
(resp., smooth almost compact) iff for every family {Ai : i ∈ J} in
{A ∈ IX : τ(A) > 0} covering X, there exists a finite subset J0 of J
such that ∪i∈J0(Ai)o = 1X (resp., ∪i∈J0Ai = 1X).

Definition 4.5[6]. Let α ∈ [0, 1). A s.t.s. (X, τ) is called smooth
nearly α-compact (resp., smooth almost α-compact) iff for every family
{Ai : i ∈ J} in {A ∈ IX : τ(A) > 0} covering X, there exists a finite
subset J0 of J such that ∪i∈J0((Ai)α)o

α = 1X (resp., ∪i∈J0(Ai)α = 1X).

Theorem 4.6. Let (X, τ) be a s.t.s. and let α ∈ [0, 1). Then (X, τ)
is quasi-smooth almost α-compact ⇒ (X, τ) is smooth almost compact
⇒ (X, τ) is smooth almost α-compact.

Proof. The proof follows directly from Theorem 3.3.
¤

Theorem 4.7. Let (X, τ) be a s.t.s. and let α ∈ [0, 1). If (X, τ) is
smooth compact, then (X, τ) is quasi-smooth nearly α-compact.
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Proof. Let (X, τ) be a smooth compact s.t.s. Then for every family
{Ai : i ∈ J} in {A ∈ IX : τ(A) > 0} covering X, there exists a
finite subset J0 of J such that ∪i∈J0Ai = 1X . Since τ(Ai) > 0 for
each i ∈ J , Ai = wintα(Ai) for each i ∈ J by Theorem 3.7. From
Theorem 3.3 and 3.4 we have Ai = wintα(Ai) ⊆ wintα(wclα(Ai))
for each i ∈ J . Thus 1X = ∪i∈J0Ai ⊆ ∪i∈J0wintα(wclα(Ai)), i.e.,
∪i∈J0wintα(wclα(Ai)) = 1X . Hence (X, τ) is quasi-smooth nearly α-
compact.

¤

Theorem 4.8. Let α ∈ [0, 1). Then a quasi-smooth nearly α-
compact s.t.s. (X, τ) is quasi-smooth almost α-compact.

Proof. Let (X, τ) be a quasi-smooth nearly α-compact s.t.s. Then
for every family {Ai : i ∈ J} in {A ∈ IX : τ(A) > 0} covering X, there
exists a finite subset J0 of J such that ∪i∈J0wintα(wclα(Ai)) = 1X .
Since wintα(wclα(Ai)) ⊆ wclα(Ai) for each i ∈ J by Theorem 3.3,
1X = ∪i∈J0wintα(wclα(Ai)) ⊆ ∪i∈J0wclα(Ai). Thus ∪i∈J0wclα(Ai) =
1X . Hence (X, τ) is quasi-smooth almost α-compact.

¤

Theorem 4.9. Let (X, τ) and (Y, σ) be two smooth topological
spaces, α ∈ [0, 1) and f : X → Y a surjective, quasi-smooth continuous
and weak smooth α-continuous function with respect to τ and σ. If
(X, τ) is quasi-smooth almost α-compact, then so is (Y, σ).

Proof. Let {Ai : i ∈ J} be a family in {A ∈ IY : σ(A) > 0} covering
Y , i.e., ∪i∈JAi = 1Y . Then 1X = f−1(1Y ) = ∪i∈Jf−1(Ai). Since f
is quasi-smooth continuous with respect to τ and σ, τ(f−1(Ai)) > 0
for each i ∈ J . Since (X, τ) is quasi-smooth almost α-compact, there
exists a finite subset J0 of J such that ∪i∈J0wclα(f−1(Ai)) = 1X . From
the surjectivity of f we have 1Y = f(1X) = f(∪i∈J0wclα(f−1(Ai))) =
∪i∈J0f(wclα(f−1(Ai))). Since f : X → Y is weak smooth α-continuous
with respect to τ and σ, from Theorem 3.10 we have wclα(f−1(A)) ⊆
f−1(wclα(A)) for every A ∈ IY . Hence

1Y = ∪i∈J0f(wclα(f−1(Ai))) ⊆ ∪i∈J0f(f−1(wclα(Ai)))

= ∪i∈J0wclα(Ai),
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i.e., ∪i∈J0wclα(Ai) = 1Y . Thus (Y, σ) is quasi-smooth almost α-
compact.

¤

Theorem 4.10. Let (X, τ) and (Y, σ) be two smooth topological
spaces, α ∈ [0, 1) and f : X → Y a surjective, quasi-smooth contin-
uous, weak smooth α-continuous and weak smooth α-open function
with respect to τ and σ. If (X, τ) is quasi-smooth nearly α-compact,
then so is (Y, σ).

Proof. Let {Ai : i ∈ J} be a family in {A ∈ IY : σ(A) > 0} covering
Y , i.e., ∪i∈JAi = 1Y . Then 1X = f−1(1Y ) = ∪i∈Jf−1(Ai). Since
f is quasi-smooth continuous, τ(f−1(Ai)) > 0 for each i ∈ J . Since
(X, τ) is quasi-smooth nearly α-compact, there exists a finite subset
J0 of J such that ∪i∈J0wintα(wclα(f−1(Ai))) = 1X . From the surjec-
tivity of f we have 1Y = f(1X) = f(∪i∈J0wintα(wclα(f−1(Ai)))) =
∪i∈J0f(wintα(wclα(f−1(Ai)))).

Since f : X → Y is weak smooth α-open with respect to τ and σ,
from Theorem 3.12 we have

f(wintα(wclα(f−1(Ai)))) ⊆ wintα(f(wclα(f−1(Ai))))

for each i ∈ J . Since f : X → Y is weak smooth α-continuous with
respect to τ and σ, from Theorem 3.10 we have wclα(f−1(Ai)) ⊆
f−1(wclα(Ai)) for each i ∈ J . Hence we have

1Y = ∪i∈J0f(wintα(wclα(f−1(Ai))))

⊆ ∪i∈J0wintα(f(wclα(f−1(Ai))))

⊆ ∪i∈J0wintα(f(f−1(wclα(Ai))))

= ∪i∈J0wintα(wclα(Ai)).

Thus ∪i∈J0wintα(wclα(Ai)) = 1Y . Hence (Y, σ) is quasi-smooth nearly
α-compact.

¤

Definition 4.11. Let α ∈ [0, 1). A s.t.s. (X, τ) is called quasi-
smooth α-regular iff each fuzzy set A ∈ IX satisfying τ(A) > 0 can be
written as A = ∪{K ∈ IX : τ(K) ≥ τ(A), wclα(K) ⊆ A}.
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Theorem 4.12. Let α ∈ [0, 1). Then a quasi-smooth almost α-
compact quasi-smooth α-regular s.t.s. (X, τ) is smooth compact.

Proof. Let {Ai : i ∈ J} be a family in {A ∈ IX : σ(A) > 0}
covering X, i.e., ∪i∈JAi = 1X . Since (X, τ) is quasi-smooth α-regular,
Ai = ∪ji∈Ji

{Kji
∈ IX : τ(Kji

) ≥ τ(Ai), wclα(Kji
) ⊆ Ai} for each

i ∈ J . Since ∪i∈JAi = ∪i∈J [∪ji∈Ji
Kji

] = 1X and (X, τ) is quasi-
smooth almost α-compact, there exists a finite subfamily {Kl ∈ IX :
τ(Kl) > 0, l ∈ L} such that ∪l∈Lwclα(Kl) = 1X . Since for each l ∈ L
there exists i ∈ J such that wclα(Kl) ⊆ Ai, ∪i∈J0Ai = 1X , where J0

is a finite subset of J . Hence (X, τ) is smooth compact.
¤

We obtain the following corollary from Theorem 4.8 and 4.12.

Corollary 4.13. Let α ∈ [0, 1). Then a quasi-smooth nearly α-
compact quasi-smooth α-regular s.t.s. (X, τ) is smooth compact.
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