Kangweon-Kyungki Math. Jour. 13 (2005), No. 2, pp. 223-234

QUASI-SMOOTH α -STRUCTURE OF SMOOTH TOPOLOGICAL SPACES

WON KEUN MIN AND CHUN-KEE PARK*

ABSTRACT. We introduce the concepts of weak smooth α -closure and weak smooth α -interior of a fuzzy set and obtain some of their structural properties. We also introduce the concepts of several types of quasi-smooth α - compactness in terms of the concepts of weak smooth α -closure and weak smooth α -interior of a fuzzy set and investigate some of their properties.

1. Introduction

Badard [1] introduced the concept of a smooth topological space which is a generalization of Chang's fuzzy topological space [2]. Many mathematical structures in smooth topological spaces were introduced and studied. In particular, Gayyar, Kerre, Ramadan [5] and Demirci [3, 4] introduced the concepts of smooth closure and smooth interior of a fuzzy set and several types of compactness in smooth topological spaces and obtained some of their properties. In [6] we introduced the concepts of smooth α -closure and smooth α -interior of a fuzzy set which are generalizations of smooth closure and smooth interior of a fuzzy set defined in [3] and also introduced several types of α compactness in smooth topological spaces and obtained some of their properties.

In this paper, we introduce the concepts of weak smooth α -closure and weak smooth α -interior of a fuzzy set and obtain some of their structural properties. We also introduce the concepts of several types of quasi-smooth α - compactness in terms of the concepts of weak smooth

Received July 26, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 03E72.

Key words and phrases: fuzzy sets, smooth topology, weak smooth α -closure, weak smooth α -interior, quasi-smooth α -compactness.

^{*}Corresponding author

 α -closure and weak smooth α -interior of a fuzzy set and investigate some of their properties.

2. Preliminaries

Let X be a set and I = [0, 1] be the unit interval of the real line. I^X will denote the set of all fuzzy sets of X. 0_X and 1_X will denote the characteristic functions of ϕ and X, respectively.

A smooth topological space (s.t.s.) [7] is an ordered pair (X, τ) , where X is a non-empty set and $\tau : I^X \to I$ is a mapping satisfying the following conditions:

(O1) $\tau(0_X) = \tau(1_X) = 1;$

(O2) $\forall A, B \in I^X, \ \tau(A \cap B) \ge \tau(A) \land \tau(B);$

(O3) for every subfamily $\{A_i : i \in J\} \subseteq I^X$,

$$\tau(\bigcup_{i\in J} A_i) \ge \wedge_{i\in J} \tau(A_i).$$

Then the mapping $\tau: I^X \to I$ is called a smooth topology on X. The number $\tau(A)$ is called the degree of openness of A.

A mapping $\tau^*: I^X \to I$ is called a smooth cotopology [7] iff the following three conditions are satisfied:

(C1) $\tau^*(0_X) = \tau^*(1_X) = 1;$

(C2) $\forall A, B \in I^X, \ \tau^*(A \cup B) \ge \tau^*(A) \land \tau^*(B);$ (C3) for every subfamily $\{A_i : i \in J\} \subseteq I^X, \ \tau^*(\cap_{i \in J} A_i) \ge$ $\wedge_{i \in J} \tau^*(A_i).$

If τ is a smooth topology on X, then the mapping $\tau^*: I^X \to I$, defined by $\tau^*(A) = \tau(A^c)$ where A^c denotes the complement of A, is a smooth cotopology on X. Conversely, if τ^* is a smooth cotopology on X, then the mapping $\tau: I^X \to I$, defined by $\tau(A) = \tau^*(A^c)$, is a smooth topology on X [7].

For the s.t.s. (X,τ) and $\alpha \in [0,1]$, the family $\tau_{\alpha} = \{A \in I^X :$ $\tau(A) \geq \alpha$ defines a Chang's fuzzy topology (CFT) on X [2]. The family of all closed fuzzy sets with respect to τ_{α} is denoted by τ_{α}^* and we have $\tau_{\alpha}^* = \{A \in I^X : \tau^*(A) \ge \alpha\}$. For $A \in I^X$ and $\alpha \in [0, 1]$, the τ_{α} -closure (resp., τ_{α} -interior) of \overline{A} , denoted by $cl_{\alpha}(A)$ (resp., $int_{\alpha}(A)$), is defined by $cl_{\alpha}(A) = \cap \{K \in \tau_{\alpha}^* : A \subseteq K\}$ (resp., $int_{\alpha}(A) = \cup \{K \in K\}$) $\tau_{\alpha}: K \subseteq A\}).$

Demirci [3] introduced the concepts of smooth closure and smooth interior in smooth topological spaces as follows:

Let (X, τ) be a s.t.s. and $A \in I^X$. Then the τ -smooth closure (resp., τ -smooth interior) of A, denoted by \overline{A} (resp., A^o), is defined by $\overline{A} = \cap \{K \in I^X : \tau^*(K) > 0, A \subseteq K\}$ (resp., $A^o = \cup \{K \in I^X : \tau(K) > 0, K \subseteq A\}$).

Let (X, τ) and (Y, σ) be two smooth topological spaces. A function $f: X \to Y$ is called smooth continuous with respect to τ and σ [7] iff $\tau(f^{-1}(A)) \geq \sigma(A)$ for every $A \in I^Y$. A function $f: X \to Y$ is called weakly smooth continuous with respect to τ and σ [7] iff $\sigma(A) > 0 \Rightarrow \tau(f^{-1}(A)) > 0$ for every $A \in I^Y$. In this paper, a weakly smooth continuous function is called a quasi-smooth continuous function.

A function $f: X \to Y$ is smooth continuous with respect to τ and σ iff $\tau^*(f^{-1}(A)) \geq \sigma^*(A)$ for every $A \in I^Y$. A function $f: X \to Y$ is weakly smooth continuous with respect to τ and σ iff $\sigma^*(A) > 0 \Rightarrow \tau^*(f^{-1}(A)) > 0$ for every $A \in I^Y$ [7].

A function $f: X \to Y$ is called smooth open (resp., smooth closed) with respect to τ and σ [7] if and only if $\tau(A) \leq \sigma(f(A))$ (resp., $\tau^*(A) \leq \sigma^*(f(A))$) for every $A \in I^X$.

A function $f : X \to Y$ is called smooth preserving (resp., strict smooth preserving) with respect to τ and σ [5] if and only if $\sigma(A) \ge \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) \ge \tau(f^{-1}(B))$

 $(\text{resp.}, \, \sigma(A) > \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) > \tau(f^{-1}(B))) \text{ for every } A, B \in I^Y.$

If $f: X \to Y$ is a smooth preserving function (resp., a strict smooth preserving function) with respect to τ and σ , then $\sigma^*(A) \ge \sigma^*(B) \Leftrightarrow$ $\tau^*(f^{-1}(A)) \ge \tau^*(f^{-1}(B))$ (resp., $\sigma^*(A) > \sigma^*(B) \Leftrightarrow \tau^*(f^{-1}(A)) >$ $\tau^*(f^{-1}(B))$) for every $A, B \in I^Y$ [5].

A function $f: X \to Y$ is called smooth open preserving (resp., strict smooth open preserving) with respect to τ and σ [5] iff $\tau(A) \ge \tau(B) \Rightarrow$ $\sigma(f(A)) \ge \sigma(f(B))$ (resp., $\tau(A) > \tau(B) \Rightarrow \sigma(f(A)) > \sigma(f(B))$) for every $A, B \in I^X$.

3. Weak smooth α -closure and weak smooth α -interior

In this section, we introduce the concepts of weak smooth α -closure and weak smooth α -interior of a fuzzy set in smooth topological spaces and investigate some of their properties. DEFINITION 3.1[6]. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A \in I^X$. The τ -smooth α -closure (resp., τ -smooth α -interior) of A, denoted by \overline{A}_{α} (resp., A^o_{α}), is defined by $\overline{A}_{\alpha} = \cap \{K \in I^X : \tau^*(K) > \alpha \tau^*(A), A \subseteq K\}$ (resp., $A^o_{\alpha} = \cup \{K \in I^X : \tau(K) > \alpha \tau(A), K \subseteq A\}$).

Demirci [4] defined the families $W(\tau) = \{A \in I^X : A = A^o\}$ and $W^*(\tau) = \{A \in I^X : A = \overline{A}\}$, where (X, τ) is a s.t.s. Note that $A \in W(\tau) \Leftrightarrow A^c \in W^*(\tau)$.

We define the families $W_{\alpha}(\tau) = \{A \in I^X : A = A^o_{\alpha}\}$ and $W^*_{\alpha}(\tau) = \{A \in I^X : A = \overline{A}_{\alpha}\}$, where (X, τ) is a s.t.s. and $\alpha \in [0, 1)$. Note that $A \in W_{\alpha}(\tau) \Leftrightarrow A^c \in W^*_{\alpha}(\tau)$.

DEFINITION 3.2. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A \in I^X$. The weak τ -smooth α -closure (resp., weak τ -smooth α -interior) of A, denoted by $wcl_{\alpha}(A)$ (resp., $wint_{\alpha}(A)$), is defined by $wcl_{\alpha}(A) = \cap \{K \in I^X : K \in W^*_{\alpha}(\tau), A \subseteq K\}$ (resp., $wint_{\alpha}(A) = \cup \{K \in I^X : K \in W^*_{\alpha}(\tau), K \subseteq A\}$).

THEOREM 3.3. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A \in I^X$. Then (a) $A \subseteq wcl_{\alpha}(A) \subseteq \overline{A} \subseteq \overline{A}_{\alpha}$, (b) $A^o_{\alpha} \subseteq A^o \subseteq wint_{\alpha}(A) \subseteq A$.

Proof. (a) Let $K \in I^X$ and $A \subseteq K$. Then $\tau^*(K) > \alpha \tau^*(A) \Rightarrow \tau^*(K) > 0$ and $\tau^*(K) > 0 \Rightarrow K = \overline{K}_{\alpha}$, i.e., $K \in W^*_{\alpha}(\tau)$ by Theorem 3.6[6]. From the definitions of \overline{A}_{α} , \overline{A} and $wcl_{\alpha}(A)$ we have $A \subseteq wcl_{\alpha}(A) \subseteq \overline{A} \subseteq \overline{A}_{\alpha}$.

(b) Let $K \in I^X$ and $K \subseteq A$. Then $\tau(K) > \alpha \tau(A) \Rightarrow \tau(K) > 0$ and $\tau(K) > 0 \Rightarrow K = K^o_{\alpha}$, i.e., $K \in W_{\alpha}(\tau)$ by Theorem 3.6[6]. From the definition of A^o_{α} , A^o and $wint_{\alpha}(A)$ we have $A^o_{\alpha} \subseteq A^o \subseteq wint_{\alpha}(A) \subseteq A$.

THEOREM 3.4. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A, B \in I^X$. Then

(a) $A \subseteq B \Rightarrow wcl_{\alpha}(A) \subseteq wcl_{\alpha}(B)$,

(b) $A \subseteq B \Rightarrow wint_{\alpha}(A) \subseteq wint_{\alpha}(B)$,

(c) $(wcl_{\alpha}(A))^{c} = wint_{\alpha}(A^{c}),$

(d) $wcl_{\alpha}(A) = (wint_{\alpha}(A^c))^c$,

- (e) $(wint_{\alpha}(A))^c = wcl_{\alpha}(A^c),$
- (f) $wint_{\alpha}(A) = (wcl_{\alpha}(A^c))^c$.

Proof. (a) and (b) follow directly from Definition 3.2.(c) From Definition 3.2 we have

$$(wcl_{\alpha}(A))^{c} = (\cap \{K \in I^{X} : K \in W_{\alpha}^{*}(\tau), A \subseteq K\})^{c}$$
$$= \cup \{K^{c} : K \in I^{X}, K^{c} \in W_{\alpha}(\tau), K^{c} \subseteq A^{c}\}$$
$$= \cup \{U \in I^{X} : U \in W_{\alpha}(\tau), U \subseteq A^{c}\}$$
$$= wint_{\alpha}(A^{c}).$$

(d), (e) and (f) can be easily obtained from (c).

THEOREM 3.5. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A, B \in I^X$. Then

(a) $wcl_{\alpha}(0_X) = 0_X$,

(b) $A \subseteq wcl_{\alpha}(A)$,

(c) $wcl_{\alpha}(A) = wcl_{\alpha}(wcl_{\alpha}(A)),$

(d) $wcl_{\alpha}(A) \cup wcl_{\alpha}(B) \subseteq wcl_{\alpha}(A \cup B),$

(e) $wcl_{\alpha}(A \cap B) \subseteq wcl_{\alpha}(A) \cap wcl_{\alpha}(B)$.

Proof. (a) By Theorem 3.4[6], $\overline{(0_X)}_{\alpha} = 0_X$, i.e., $0_X \in W^*_{\alpha}(\tau)$. From Definition 3.2 we have $wcl_{\alpha}(0_X) = 0_X$.

(b) follows directly from Definition 3.2.

(c) From (b) we have $wcl_{\alpha}(A) \subseteq wcl_{\alpha}(wcl_{\alpha}(A))$. From Definition 3.2 we have

$$wcl_{\alpha}(wcl_{\alpha}(A)) = \cap \{K \in I^{X} : K \in W_{\alpha}^{*}(\tau), wcl_{\alpha}(A) \subseteq K\}$$
$$= \cap \{K \in I^{X} : K \in W_{\alpha}^{*}(\tau), \cap \{U \in I^{X} : U \in W_{\alpha}^{*}(\tau), A \subseteq U\} \subseteq K\}$$
$$\subseteq \cap \{K \in I^{X} : K \in W_{\alpha}^{*}(\tau), A \subseteq K\}$$
$$= wcl_{\alpha}(A).$$

Hence $wcl_{\alpha}(A) = wcl_{\alpha}(wcl_{\alpha}(A)).$

(d) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, $wcl_{\alpha}(A) \subseteq wcl_{\alpha}(A \cup B)$ and $wcl_{\alpha}(B) \subseteq wcl_{\alpha}(A \cup B)$ by Theorem 3.4. Hence $wcl_{\alpha}(A) \cup wcl_{\alpha}(B) \subseteq wcl_{\alpha}(A \cup B)$.

(e) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, $wcl_{\alpha}(A \cap B) \subseteq wcl_{\alpha}(A)$ and $wcl_{\alpha}(A \cap B) \subseteq wcl_{\alpha}(B)$ by Theorem 3.4. Hence $wcl_{\alpha}(A \cap B) \subseteq wcl_{\alpha}(A) \cap wcl_{\alpha}(B)$.

THEOREM 3.6. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A, B \in I^X$. Then

(a) $wint_{\alpha}(1_X) = 1_X$, (b) $wint_{\alpha}(A) \subseteq A$,

(c) $wint_{\alpha}(A) = wint_{\alpha}(wint_{\alpha}(A)),$

(d) $wint_{\alpha}(A) \cup wint_{\alpha}(B) \subseteq wint_{\alpha}(A \cup B),$

(e) $wint_{\alpha}(A \cap B) \subseteq wint_{\alpha}(A) \cap wint_{\alpha}(B)$.

Proof. The proof is similar to the proof of Theorem 3.5.

THEOREM 3.7. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A \in I^X$. Then (a) $\tau^*(A) > 0 \Rightarrow wcl_{\alpha}(A) = A$, (b) $\tau(A) > 0 \Rightarrow wint_{\alpha}(A) = A$.

Proof. Let $\tau^*(A) > 0$. Then $\overline{A}_{\alpha} = A$, i.e., $A \in W^*_{\alpha}(\tau)$ by Theorem 3.6[6]. Hence $A \in \{K \in I^X : K \in W^*_{\alpha}(\tau), A \subseteq K\}$. By Definition 3.2, $wcl_{\alpha}(A) \subseteq A$. By Theorem 3.3, $A \subseteq wcl_{\alpha}(A)$. Hence $wcl_{\alpha}(A) = A$.

(b) Let $\tau(A) > 0$. Then $A^o_{\alpha} = A$, i.e., $A \in W_{\alpha}(\tau)$ by Theorem 3.6[6]. Hence $A \in \{K \in I^X : K \in W_{\alpha}(\tau), K \subseteq A\}$. By Definition 3.2, $A \subseteq wint_{\alpha}(A)$. By Theorem 3.3, $wint_{\alpha}(A) \subseteq A$. Hence $wint_{\alpha}(A) = A$.

THEOREM 3.8. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A \in I^X$. Then (a) if there exists a $\beta \in (\alpha \tau^*(A), 1]$ such that $A = cl_\beta(A)$, then $A = wcl_\alpha(A) = \overline{A} = \overline{A}_\alpha$,

(b) if there exists a $\beta \in (\alpha \tau(A), 1]$ such that $A = int_{\beta}(A)$, then $A = wint_{\alpha}(A) = A^{\circ} = A^{\circ}_{\alpha}$.

Proof. (a) If there exists a $\beta \in (\alpha \tau^*(A), 1]$ such that $A = cl_\beta(A)$, then $A \subseteq wcl_\alpha(A) \subseteq \overline{A} \subseteq \overline{A}_\alpha = \bigcap_{\beta > \alpha \tau^*(A)} cl_\beta(A) \subseteq cl_\beta(A) = A$ by Theorem 3.8[6] and 3.3. Hence $A = wcl_\alpha(A) = \overline{A} = \overline{A}_\alpha$.

(b) If there exists a $\beta \in (\alpha \tau(A), 1]$ such that $A = int_{\beta}(A)$, then $A = int_{\beta}(A) \subseteq \bigcup_{\beta > \alpha \tau(A)} int_{\beta}(A) = A^{o}_{\alpha} \subseteq A^{o} \subseteq wint_{\alpha}(A) \subseteq A$ by Theorem 3.8[6] and 3.3. Hence $A = wint_{\alpha}(A) = A^{o} = A^{o}_{\alpha}$.

DEFINITION 3.9. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. A function $f: X \to Y$ is called weak smooth α -continuous with respect to τ and σ iff $A \in W_{\alpha}(\sigma) \Rightarrow f^{-1}(A) \in W_{\alpha}(\tau)$ for every $A \in I^{Y}$.

THEOREM 3.10. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. If a function $f : X \to Y$ is weak smooth α -continuous with respect to τ and σ , then

(a) $f(wcl_{\alpha}(A)) \subseteq wcl_{\alpha}(f(A))$ for every $A \in I^X$, (b) $wcl_{\alpha}(f^{-1}(A)) \subseteq f^{-1}(wcl_{\alpha}(A))$ for every $A \in I^Y$, (c) $f^{-1}(wint_{\alpha}(A)) \subseteq wint_{\alpha}(f^{-1}(A))$ for every $A \in I^{Y}$. *Proof.* (a) For every $A \in I^X$, we have $f^{-1}(wcl_{\alpha}(f(A))) = f^{-1}(\cap \{U \in I^{Y} : U \in W^{*}_{\alpha}(\sigma), f(A) \subseteq U\})$ $\supset f^{-1}(\cap \{ U \in I^Y : f^{-1}(U) \in W^*_{\alpha}(\tau), A \subseteq f^{-1}(U) \})$ $= \cap \{ f^{-1}(U) \in I^X : U \in I^Y, f^{-1}(U) \in W^*_{\alpha}(\tau), A \subseteq f^{-1}(U) \}$ $\supset \cap \{ K \in I^X : K \in W^*_{\alpha}(\tau), A \subseteq K \}$ $= wcl_{\alpha}(A).$ Hence $f(wcl_{\alpha}(A)) \subseteq wcl_{\alpha}(f(A))$. (b) For every $A \in I^Y$, we have $f^{-1}(wcl_{\alpha}(A)) = f^{-1}(\cap \{U \in I^Y : U \in W^*_{\alpha}(\sigma), A \subseteq U\})$ $\supset f^{-1}(\cap \{U \in I^Y : f^{-1}(U) \in W^*_{\alpha}(\tau), f^{-1}(A) \subset f^{-1}(U)\})$ $= \cap \{ f^{-1}(U) \in I^X : U \in I^Y, f^{-1}(U) \in W^*_{\alpha}(\tau),$ $f^{-1}(A) \subset f^{-1}(U)\}$ $\supset \cap \{K \in I^X : K \in W^*_{\alpha}(\tau), f^{-1}(A) \subseteq K\}$ $= wcl_{\alpha}(f^{-1}(A)).$

(c) For every $A \in I^Y$, we have

$$f^{-1}(wint_{\alpha}(A)) = f^{-1}(\cup \{U \in I^{Y} : U \in W_{\alpha}(\sigma), U \subseteq A\})$$

$$\subseteq f^{-1}(\cup \{U \in I^{Y} : f^{-1}(U) \in W_{\alpha}(\tau), f^{-1}(U) \subseteq f^{-1}(A)\})$$

$$= \cup \{f^{-1}(U) \in I^{X} : U \in I^{Y}, f^{-1}(U) \in W_{\alpha}(\tau), f^{-1}(U) \subseteq f^{-1}(A)\}$$

$$\subseteq \cup \{K \in I^{X} : K \in W_{\alpha}(\tau), K \subseteq f^{-1}(A)\}$$

$$= wint_{\alpha}(f^{-1}(A)).$$

DEFINITION 3.11. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. A function $f : X \to Y$ is called weak smooth α -open (resp., weak smooth α -closed) with respect to τ and σ iff $A \in W_{\alpha}(\tau) \Rightarrow f(A) \in W_{\alpha}(\sigma)$ (resp., $A \in W_{\alpha}^{*}(\tau) \Rightarrow f(A) \in W_{\alpha}^{*}(\sigma)$) for every $A \in I^{X}$.

THEOREM 3.12. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. If a function $f : X \to Y$ is weak smooth α -open with respect to τ and σ , then $f(wint_{\alpha}(A)) \subseteq wint_{\alpha}(f(A))$ for every $A \in I^X$.

Proof. For every $A \in I^X$, we have

$$f(wint_{\alpha}(A)) = f(\cup \{U \in I^{X} : U \in W_{\alpha}(\tau), U \subseteq A\})$$

$$\subseteq f(\cup \{U \in I^{X} : f(U) \in W_{\alpha}(\sigma), f(U) \subseteq f(A)\})$$

$$= \cup \{f(U) \in I^{Y} : U \in I^{X}, f(U) \in W_{\alpha}(\sigma), f(U) \subseteq f(A)\}$$

$$\subseteq \cup \{K \in I^{Y} : K \in W_{\alpha}(\sigma), K \subseteq f(A)\}$$

$$= wint_{\alpha}(f(A)).$$

4. Several types of quasi-smooth α -compactness

In this section, we introduce the concepts of several types of quasismooth α -compactness in smooth topological spaces and investigate some of their properties.

DEFINITION 4.1. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called quasismooth nearly α -compact iff for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i)) = 1_X$.

DEFINITION 4.2. Let $\alpha \in [0, 1)$. A s.t.s. (X, τ) is called quasismooth almost α -compact iff for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} wcl_{\alpha}(A_i) = 1_X$.

DEFINITION 4.3[3]. A s.t.s. (X, τ) is called smooth compact iff for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} A_i = 1_X$.

DEFINITION 4.4[3]. A s.t.s. (X, τ) is called smooth nearly compact (resp., smooth almost compact) iff for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{A}_i)^o = \mathbb{1}_X$ (resp., $\bigcup_{i \in J_0} \overline{A}_i = \mathbb{1}_X$).

DEFINITION 4.5[6]. Let $\alpha \in [0, 1)$. A s.t.s. (X, τ) is called smooth nearly α -compact (resp., smooth almost α -compact) iff for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{(A_i)}_{\alpha})_{\alpha}^o = 1_X$ (resp., $\bigcup_{i \in J_0} \overline{(A_i)}_{\alpha} = 1_X$).

THEOREM 4.6. Let (X, τ) be a s.t.s. and let $\alpha \in [0, 1)$. Then (X, τ) is quasi-smooth almost α -compact $\Rightarrow (X, \tau)$ is smooth almost compact $\Rightarrow (X, \tau)$ is smooth almost α -compact.

Proof. The proof follows directly from Theorem 3.3.

THEOREM 4.7. Let (X, τ) be a s.t.s. and let $\alpha \in [0, 1)$. If (X, τ) is smooth compact, then (X, τ) is quasi-smooth nearly α -compact.

Proof. Let (X, τ) be a smooth compact s.t.s. Then for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} A_i = 1_X$. Since $\tau(A_i) > 0$ for each $i \in J$, $A_i = wint_{\alpha}(A_i)$ for each $i \in J$ by Theorem 3.7. From Theorem 3.3 and 3.4 we have $A_i = wint_{\alpha}(A_i) \subseteq wint_{\alpha}(wcl_{\alpha}(A_i))$ for each $i \in J$. Thus $1_X = \bigcup_{i \in J_0} A_i \subseteq \bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i))$, i.e., $\bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i)) = 1_X$. Hence (X, τ) is quasi-smooth nearly α -compact.

THEOREM 4.8. Let $\alpha \in [0, 1)$. Then a quasi-smooth nearly α compact s.t.s. (X, τ) is quasi-smooth almost α -compact.

Proof. Let (X, τ) be a quasi-smooth nearly α -compact s.t.s. Then for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} wint_\alpha(wcl_\alpha(A_i)) = 1_X$. Since $wint_\alpha(wcl_\alpha(A_i)) \subseteq wcl_\alpha(A_i)$ for each $i \in J$ by Theorem 3.3, $1_X = \bigcup_{i \in J_0} wint_\alpha(wcl_\alpha(A_i)) \subseteq \bigcup_{i \in J_0} wcl_\alpha(A_i)$. Thus $\bigcup_{i \in J_0} wcl_\alpha(A_i) = 1_X$. Hence (X, τ) is quasi-smooth almost α -compact.

THEOREM 4.9. Let (X, τ) and (Y, σ) be two smooth topological spaces, $\alpha \in [0, 1)$ and $f: X \to Y$ a surjective, quasi-smooth continuous and weak smooth α -continuous function with respect to τ and σ . If (X, τ) is quasi-smooth almost α -compact, then so is (Y, σ) .

Proof. Let $\{A_i : i \in J\}$ be a family in $\{A \in I^Y : \sigma(A) > 0\}$ covering Y, i.e., $\bigcup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \bigcup_{i \in J} f^{-1}(A_i)$. Since f is quasi-smooth continuous with respect to τ and σ , $\tau(f^{-1}(A_i)) > 0$ for each $i \in J$. Since (X, τ) is quasi-smooth almost α -compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} wcl_\alpha(f^{-1}(A_i)) = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} wcl_\alpha(f^{-1}(A_i))) = \bigcup_{i \in J_0} f(wcl_\alpha(f^{-1}(A_i)))$. Since $f : X \to Y$ is weak smooth α -continuous with respect to τ and σ , from Theorem 3.10 we have $wcl_\alpha(f^{-1}(A)) \subseteq f^{-1}(wcl_\alpha(A))$ for every $A \in I^Y$. Hence

$$1_Y = \bigcup_{i \in J_0} f(wcl_\alpha(f^{-1}(A_i))) \subseteq \bigcup_{i \in J_0} f(f^{-1}(wcl_\alpha(A_i)))$$
$$= \bigcup_{i \in J_0} wcl_\alpha(A_i),$$

232

i.e., $\bigcup_{i \in J_0} wcl_{\alpha}(A_i) = 1_Y$. Thus (Y, σ) is quasi-smooth almost α -compact.

233

THEOREM 4.10. Let (X, τ) and (Y, σ) be two smooth topological spaces, $\alpha \in [0, 1)$ and $f : X \to Y$ a surjective, quasi-smooth continuous, weak smooth α -continuous and weak smooth α -open function with respect to τ and σ . If (X, τ) is quasi-smooth nearly α -compact, then so is (Y, σ) .

Proof. Let $\{A_i : i \in J\}$ be a family in $\{A \in I^Y : \sigma(A) > 0\}$ covering Y, i.e., $\bigcup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \bigcup_{i \in J} f^{-1}(A_i)$. Since f is quasi-smooth continuous, $\tau(f^{-1}(A_i)) > 0$ for each $i \in J$. Since (X, τ) is quasi-smooth nearly α -compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} wint_\alpha(wcl_\alpha(f^{-1}(A_i))) = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} wint_\alpha(wcl_\alpha(f^{-1}(A_i)))) = \bigcup_{i \in J_0} f(wint_\alpha(wcl_\alpha(f^{-1}(A_i))))$.

Since $f: X \to Y$ is weak smooth α -open with respect to τ and σ , from Theorem 3.12 we have

$$f(wint_{\alpha}(wcl_{\alpha}(f^{-1}(A_i)))) \subseteq wint_{\alpha}(f(wcl_{\alpha}(f^{-1}(A_i))))$$

for each $i \in J$. Since $f: X \to Y$ is weak smooth α -continuous with respect to τ and σ , from Theorem 3.10 we have $wcl_{\alpha}(f^{-1}(A_i)) \subseteq f^{-1}(wcl_{\alpha}(A_i))$ for each $i \in J$. Hence we have

$$1_{Y} = \bigcup_{i \in J_{0}} f(wint_{\alpha}(wcl_{\alpha}(f^{-1}(A_{i}))))$$
$$\subseteq \bigcup_{i \in J_{0}} wint_{\alpha}(f(wcl_{\alpha}(f^{-1}(A_{i}))))$$
$$\subseteq \bigcup_{i \in J_{0}} wint_{\alpha}(f(f^{-1}(wcl_{\alpha}(A_{i}))))$$
$$= \bigcup_{i \in J_{0}} wint_{\alpha}(wcl_{\alpha}(A_{i})).$$

Thus $\bigcup_{i \in J_0} wint_{\alpha}(wcl_{\alpha}(A_i)) = 1_Y$. Hence (Y, σ) is quasi-smooth nearly α -compact.

DEFINITION 4.11. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called quasismooth α -regular iff each fuzzy set $A \in I^X$ satisfying $\tau(A) > 0$ can be written as $A = \bigcup \{K \in I^X : \tau(K) \ge \tau(A), wcl_{\alpha}(K) \subseteq A\}$.

THEOREM 4.12. Let $\alpha \in [0, 1)$. Then a quasi-smooth almost α compact quasi-smooth α -regular s.t.s. (X, τ) is smooth compact.

Proof. Let $\{A_i : i \in J\}$ be a family in $\{A \in I^X : \sigma(A) > 0\}$ covering X, i.e., $\bigcup_{i \in J} A_i = 1_X$. Since (X, τ) is quasi-smooth α -regular, $A_i = \bigcup_{j_i \in J_i} \{K_{j_i} \in I^X : \tau(K_{j_i}) \ge \tau(A_i), wcl_\alpha(K_{j_i}) \subseteq A_i\}$ for each $i \in J$. Since $\bigcup_{i \in J} A_i = \bigcup_{i \in J} [\bigcup_{j_i \in J_i} K_{j_i}] = 1_X$ and (X, τ) is quasismooth almost α -compact, there exists a finite subfamily $\{K_l \in I^X :$ $\tau(K_l) > 0, l \in L\}$ such that $\bigcup_{l \in L} wcl_\alpha(K_l) = 1_X$. Since for each $l \in L$ there exists $i \in J$ such that $wcl_\alpha(K_l) \subseteq A_i, \bigcup_{i \in J_0} A_i = 1_X$, where J_0 is a finite subset of J. Hence (X, τ) is smooth compact.

We obtain the following corollary from Theorem 4.8 and 4.12.

COROLLARY 4.13. Let $\alpha \in [0,1)$. Then a quasi-smooth nearly α compact quasi-smooth α -regular s.t.s. (X, τ) is smooth compact.

References

- R. Badard, Smooth axiomatics, First IFSA Congress, Palma de Mallorca (July 1986).
- 2. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy Sets and Systems 90 (1997), 83-88.
- 4. _____, Three topological structures of smooth topological spaces, Fuzzy Sets and Systems **101** (1999), 185-190.
- M. K. El Gayyar, E. E. Kerre and A. A. Ramadan, Almost compactness and near compactness in smooth topological spaces, Fuzzy Sets and Systems 62 (1994), 193-202.
- C. K. Park, W. K. Min and M. H. Kim, α-compactness in smooth topological spaces, Int. J. Math. and Math. Sci. 2003 (2003), no. 46, 2897-2906.
- A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- 8. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: wkmin@kangwon.ac.kr, ckpark@kangwon.ac.kr