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PROXIMAL AND DISTAL HOMOMORPHISMS OF

FLOWS

Hyungsoo Song

Abstract. In this paper we study some characterizations of prox-
imal, distal and almost one to one homomorphisms of flows. In
particular we show that if the almost one to one proximal extension
of a minimal flow is weakly almost periodic, then it is minimal.

1. Introduction

A flow (T, X) is a topological action (t, x) 7→ tx of the discrete group
T on the compact Hausdorff space X. The enveloping semigroup E(X)
of the flow is a kind of compactification of the acting group and is itself
a flow. The flow is minimal if every orbit is dense. A flow (T, X) is
weakly almost periodic iff each element of E(X) is continuous [3].

If (T, X) and (T, Y ) are flows, a homomorphism is a continuous equi-
variant map φ : X → Y , φ(tx) = tφ(x) (t ∈ T, x ∈ X). We say
that a homomorphism φ : X → Y is proximal (distal) if whenever
x1, x2 ∈ φ−1(y) then x1 and x2 are proximal (distal). A homomorphism
φ : X → Y is almost one to one if there exists a point y0 ∈ Y such
that φ−1(y0) is a singleton. We say that X is a proximal , distal , and
almost one to one extension of Y provided that there exists a proximal,
distal, and almost one to one homomorphism of (T, X) onto (T, Y ), re-
spectively.

In this paper we investigate some characterizations of proximal, distal
and almost one to one homomorphisms of flows.
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2. Some characterizations of proximal, distal and almost one
to one homomorphisms

Theorem 2.1. [4] A distal extension of a distal flow is distal.

Theorem 2.2. [4] (1) A proximal extension of a minimal flow contains
a unique minimal set.

(2) A distal extension of a minimal flow is a disjoint union of minimal
sets.

In [5], Song proved the following theorem :

Theorem 2.3. (1) A proximal extension of a proximal flow is proxi-
mal.

(2) A distal extension of a pointwise almost periodic flow is pointwise
almost periodic.

(3) An almost one to one extension of a proximal minimal flow is
proximal.

The proof of the next corollary follows from Theorem 2.2.1 and The-
orem 2.3.3.

Corollary 2.4. An almost one to one extension of a proximal min-
imal flow contains a unique proximal minimal set.

Theorem 2.5. If the proximal extension of a minimal flow is point-
wise almost periodic, then it is minimal.

Proof. Let (T, X) be pointwise almost periodic. Then {Tx | x ∈ X}
is a partition of X consisting of minimal sets (see Proposition 2.6 in [2]).
By Theorem 2.2.1 Tx = N for all x ∈ X, where N is a unique minimal
set in X. Thus X = N .

Corollary 2.6. If the proximal extension of a minimal flow is distal,
then it is minimal.

Proof. Note that if (T, X) is distal, then it is pointwise almost periodic
(see Corollary 5.5 in [2]).
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Theorem 2.7. Suppose φ : (T, X) → (T, Y ) is an almost one to one
proximal homomorphism and (T, Y ) is minimal. Then :

(1) X contains a unique minimal set N .
(2) If φ−1({y0}) = {x0}, then x0 ∈ N .
(3) For every x ∈ X, there exists an element p ∈ E(X) such that

px ∈ N .

Proof. (1) By Theorem 2.2.1, it is obvious.
(2) Since φ(N) = Y , it follows that x0 ∈ N .
(3) Let φ−1({y0}) = {x0}. Suppose x ∈ X. If x ∈ N , then we are

done since ex = x, where e is the identity of T . If x ∈ X − N ,then we
let φ(x) = y. By the minimality of Y , we choose r ∈ E(Y ) such that
y = ry0. Then There exists an element q ∈ E(X) such that ψ(q) = r ,
where ψ : E(X) → E(Y ) is the unique epimorphism induced by φ. So
we have φ(x) = ψ(q)φ(x0) = φ(qx0). Hence x and qx0 are proximal.
Thus there exists a minimal right ideal I in E(X) such that px = p(qx0)
for all p ∈ I. Since pq(x0) ∈ N , we have px ∈ N .

Corollary 2.8. If the almost one to one proximal extension of a
minimal flow is weakly almost periodic, then it is minimal.

Proof. Note that if (T, X) is weakly almost periodic, then there exists
the only minimal ideal I in E(X) such that I is a group.

For a discrete group T , the Stone-Cěch compactification βT of T is a
compact Hausdorff space which contains T as a dense subset and has the
following universal property. Every map φ of T into a compact Hausdorff
space X can be extended to a unique continuous map ψ : βT → X.
Note that βT is a universal point transitive flow for T . For a point
transitive flow (X, x0) and p ∈ βT we shall write px0 = φ(p), where
φ : (βT, e) → (X, x0).

Let us fix from now on a minimal ideal M in βT. We denote by J
its set of idempotents and we choose a distinguished idempotent u ∈ J .
Denote by G the group uM .

Given a minimal flow X, we choose a point x0 ∈ uX = {ux | x ∈ X}.
Under the canonical map (βT, e) → (X, x0), M is mapped onto X and
u onto x0. Thus (M, u) is a universal minimal pointed flow.

Let (X, x0) be a pointed minimal flow. We define the Ellis group of
(X, x0) to be G(X, x0) = {α ∈ G | αx0 = x0}. Clearly G(X, x0) is a
subgroup of G.
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Lemma 2.9. If X is minimal and v is an idempotent in some minimal
ideal in βT, then every pair of points in vX is distal.

Theorem 2.10. [4] If φ : (X, x0) → (Y, y0) is a homomorphism of
pointed minimal flows, then G(X, x0) ⊂ G(Y, y0).

Theorem 2.11. Let φ : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal flows, and let py0 = qy0 for some p, q ∈ M . Then

(1) up−1q ∈ G(Y, y0).
(2) If φ is proximal, then up−1q ∈ G(X, x0).

Proof. (1) This follows from the fact that up−1qy0 = up−1py0 = uy0 =
y0.

(2) If py0 = qy0 for some p, q ∈ M , we have φ(up−1qx0) = up−1qy0 =
up−1py0 = φ(ux0) = φ(x0). Hence up−1qx0 and x0 are proximal. On
the other hand by Lemma 2.9 up−1qx0 and x0 = ux0 are distal. Hence
up−1qx0 = x0, i.e. up−1q ∈ G(X, x0).

Theorem 2.12. Let φ : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal flows. Then the following conditions are pairwise equiv-
alent.

(a) φ is proximal.
(b) G(X, x0) = G(Y, y0).
(c) φ−1(y) ⊂ Jx for any x ∈ φ−1(y).

Proof. We prove (c) ⇒ (a). The other statements were proved by
Glasner in [4]. Let x1, x2 ∈ φ−1(y). By hypothesis, x2 ∈ Jx1. Hence
there exists an idempoent v ∈ J such that x2 = vx1. Since vx2 = v(vx1),
it follows that x1 and x2 are proximal. This means that φ is proximal.

Theorem 2.13. [4] Let φ : (X, x0) → (Y, y0) be a homomorphism of
pointed minimal flows. Then the following statements are equivalent.

(a) φ is distal.
(b) For every y ∈ Y and p ∈ M such that py0 = y, we have φ−1(y) =

pG(Y, y0)x0.

Theorem 2.14. Let (X, x0) and (Y, y0) be pointed minimal flows
and let (Y, y0) be distal. Then: G(X, x0) ⊂ G(Y, y0) iff there exists a
homomorphism φ : (X, x0) → (Y, y0).
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Proof. Suppose G(X, x0) ⊂ G(Y, y0). Define φ : (X, x0) → (Y, y0)
by φ(px0) = py0 for each p ∈ M . If x = px0 = qx0 for p, q ∈ M ,
we have from Theorem 2.11.1 that up−1q ∈ G(X, x0). By assumption,
it is clear that up−1qy0 = y0 and hence pp−1qy0 = vqy0 = py0 where
v = pp−1 ∈ J . Then qy0 and py0 are proximal. Since Y is distal,
it follows that qy0 = py0. This means that φ is well defined. Since
the maps p 7→ px0 and p 7→ py0 are continuous, it follows that φ is
continuous. The converse follows from Theorem 2.10.

Theorem 2.15. [4] Let φ : (X, x0) → (Y, y0) and ψ : (Z, z0) →
(Y, y0) be two distal homomorphisms of minimal flows. There exists a
homomorphism θ : (Z, z0) → (X, x0) iff G(Z, z0) ⊂ G(X, x0).
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