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intuitionistic fuzzy half-compactness in intuitionistic fuzzy topological
spaces and investigate some properties of them.

2. Preliminaries

Let X be a set and I = [0, 1] be the unit interval of the real line. IX

will denote the set of all fuzzy sets of X. 0X and 1X will denote the
characteristic functions of φ and X, respectively.

Definition 2.1 ([3, 8, 11]). Let X be a non-empty set and τ : IX → I
be a mapping satisfying the following conditions:
(O1) τ(0X) = τ(1X) = 1;
(O2) ∀A,B ∈ IX , τ(A ∩B) ≥ τ(A) ∧ τ(B);
(O3) For every subfamily {Ai : i ∈ J} ⊆ IX , τ(∪i∈J Ai) ≥ ∧i∈J τ(Ai).

Then the mapping τ : IX → I is called a fuzzy topology (or gradation
of openness [10]) on X. We call the ordered pair (X, τ) a fuzzy topological
space. The value τ(A) is called the degree of openness of A.

Definition 2.2 ([1]). An intuitionistic fuzzy set A in a set X is an
object having the form

A = {〈x, µA(x), γA(x)〉 : x ∈ X}

where the functions µA : X → I and γA : X → I denote the degree of
membership and the degree of nonmembership of each element x ∈ X
to the set A, respectively, and 0 ≤ µA(x) + γA(x) ≤ 1 for each x ∈ X.

Definition 2.3 ([9]). An intuitionistic gradation of openness (briefly
IGO) of fuzzy subsets of a set X is an ordered pair (τ, τ ∗) of functions
τ, τ ∗ : IX → I such that
(IGO1) τ(A) + τ ∗(A) ≤ 1, for all A ∈ IX ;
(IGO2) τ(0X) = τ(1X) = 1, τ ∗(0X) = τ ∗(1X) = 0;
(IGO3) ∀A,B ∈ IX , τ(A∩B) ≥ τ(A)∧ τ(B) and τ ∗(A∩B) ≤ τ ∗(A)∨
τ ∗(B);
(IGO4) For every subfamily {Ai : i ∈ J} ⊆ IX , τ(∪i∈J Ai) ≥ ∧i∈J τ(Ai)
and τ ∗(∪i∈J Ai) ≤ ∨i∈J τ ∗(Ai).

Then the triplet (X, τ, τ ∗) is called an intuitionistic fuzzy topological
space (briefly IFTS) on X. τ and τ ∗ may be interpreted as gradation
of openness and gradation of nonopenness, respectively.
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Definition 2.4 ([9]). Let X be a nonempty set and two functions
F ,F∗ : IX → I be satisfying

(IGC1) F(A) + F∗(A) ≤ 1, for all A ∈ IX ;

(IGC2) F(0X) = F(1X) = 1,F∗(0X) = F∗(1X) = 0;

(IGC3) ∀A,B ∈ IX , F(A ∪ B) ≥ F(A) ∧ F(B) and F∗(A ∪ B) ≤
F∗(A) ∨ F∗(B);

(IGC4) for every subfamily {Ai : i ∈ J} ⊆ IX , F(∩i∈J Ai) ≥ ∧i∈J F(Ai)
and F∗(∩i∈J Ai) ≤ ∨i∈J F∗(Ai).

Then the ordered pair (F ,F∗) is called an intuitionistic gradation of
closedness [9] (briefly IGC) on X. F and F∗ may be interpreted as
gradation of closedness and gradation of nonclosedness, respectively.

Theorem 2.5 ([9]). Let X be a nonempty set. If (τ, τ ∗) is an IGO on
X, then the pair (F ,F∗), defined by Fτ (A) = τ(Ac), F∗

τ∗(A) = τ ∗(Ac)
where Ac denotes the complement of A, is an IGC on X. And if (F ,F∗)
is an IGC on X, then the pair (τF , τ ∗F∗), defined by τF(A) = F(Ac),
τ ∗F∗(A) = F∗(Ac) is an IGO on X.

Definition 2.6 ([9]). Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs. A
mapping f : X → Y is a gp-map if τ(f−1(A)) ≥ σ(A) and τ ∗(f−1(A)) ≤
σ∗(A) for every A ∈ IY .

Definition 2.7 ([10]). Let (X, τ, τ ∗) be an IFTS and A ∈ IX . Then
the half-closure (resp., half-interior) of A, denoted by A− (resp., Ao),
is defined by A− = ∩{K ∈ IX : Fτ (A) > 0 and F∗

τ∗(A) ≤ 1
2
, A ⊆ K}

(resp., Ao = ∪{K ∈ IX : τ(K) > 0 and τ ∗(A) ≤ 1
2
, K ⊆ A}).

Definition 2.8 ([10]). Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs. A
mapping f : X → Y is a half-gp-map iff for every A ∈ IY such that
σ(A) > 0 and σ∗(A) ≤ 1

2
, τ(f−1(A)) > 0 and τ ∗(f−1(A)) ≤ 1

2
.

Definition 2.9 ([10]). Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs. A
mapping f : X → Y is called a half-gp-open map iff for every A ∈ IX

such that τ(A) > 0 and τ ∗(A) ≤ 1
2
, σ(f(A)) > 0 and σ∗(f(A)) ≤ 1

2
.
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3. Several types compactness in intuitionistic fuzzy topolog-
ical spaces

In this section, we introduce the concepts of intuitionistic fuzzy half-
compactness, nearly intuitionistic fuzzy half-compactness and almost
intuitionistic fuzzy half-compactness in intuitionistic fuzzy topological
spaces and investigate some properties of them.

Definition 3.1. An IFTS (X, τ, τ ∗) is called intuitionistic fuzzy half-
compact iff for every family {Ai ∈ IX : τ(Ai) > 0 and τ ∗(Ai) ≤ 1

2
, i ∈ J}

covering X, there exists a finite subset Jo of J such that ∪i∈JoAi = 1X .

Theorem 3.2. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs and f :
X → Y a surjective half-gp-map. If (X, τ, τ ∗) is intuitionistic fuzzy
half-compact, then so is (Y, σ, σ∗).

Proof. Let a family {Ai ∈ IY : σ(Ai) > 0 and σ∗(Ai) ≤ 1
2
, i ∈ J}

be a cover of Y ; then by Definition 2.8, the family {f−1(Ai) ∈ IX :
τ(f−1(Ai)) > 0 and τ ∗(f−1(Ai)) ≤ 1

2
, i ∈ J} covers X. From the surjec-

tivity of f and intuitionistic fuzzy half-compactness, it follows that Y
also is intuitionistic fuzzy half-compact.

Definition 3.3. An IFTS (X, τ, τ ∗) is called nearly intuitionistic
fuzzy half-compact iff for every family {Ai ∈ IX : τ(Ai) > 0 and τ ∗(Ai) ≤
1
2
, i ∈ J} covering X, there exists a finite subset Jo of J such that
∪i∈Jo((Ai)−)o = 1X .

Theorem 3.4. An intuitionistic fuzzy half-compact space (X, τ, τ ∗)
is nearly intuitionistic half-compact.

Proof. Let {Ai ∈ IX : τ(Ai) > 0 and τ ∗(Ai) ≤ 1
2
, i ∈ J} be a cover of

X; then there exists a finite subset Jo of J such that ∪i∈JoAi = 1X . Since
τ(Ai) > 0 for all i ∈ J , we have Ai = (Ai)o ⊆ (Ai−)o. Consequently the
IFTS (X, τ, τ ∗) is nearly intuitionistic fuzzy half-compact.

Remark 3.5. In Theorem 3.4, the converse of implication may not
be true. For if (X, τ, τ ∗) is an IFTS and τ ∗(µ) = 0 for all µ ∈ IX ,
then the (X, τ, τ ∗) is a fuzzy topological space in Sostak’s sense, that
is, a fuzzy topological space is a special case in IFTSs. And in general,
a nearly fuzzy compact space is not fuzzy compact, so we can say an
nearly intuitionistic fuzzy half-compact space (X, τ, τ ∗) is not always
intuitionistic fuzzy half-compact.
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Definition 3.6. An IFTS (X, τ, τ ∗) is called almost intuitionistic
fuzzy half-compact iff for every family {Ai ∈ IX : τ(Ai) > 0 and τ ∗(Ai) ≤
1
2
, i ∈ J} covering X, there exists a finite subset Jo of J such that
∪i∈JoAi− = 1X .

Theorem 3.7. A nearly intuitionistic fuzzy half-compact space
(X, τ, τ ∗) is almost intuitionistic fuzzy half-compact.

Proof. Let {Ai ∈ IX : τ(Ai) > 0 and τ ∗(Ai) ≤ 1
2
, i ∈ J} be a cover of

X; then there exists a finite subset Jo of J such that ∪i∈Jo(Ai−)o = 1X .
Since (Ai−)o ⊆ Ai− for each i ∈ J , we can say (X, τ, τ ∗) is almost
intuitionistic fuzzy half-compact.

As Remark 3.5, we can show that the almost intuitionistic fuzzy half-
compactness is not always the nearly intuitionistic fuzzy half-compactness.

Theorem 3.8. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs and f :
X → Y a surjective half-gp-map. If X is almost intuitionistic fuzzy
half-compact, then so is Y .

Proof. Let {Ai ∈ IY : σ(Ai) > 0 and σ∗(Ai) ≤ 1
2
, i ∈ J} be a cover

of Y . Then 1X = f−1(1Y ) = ∪i∈Jf−1(Ai). Since f is a half-gp-map,
{f−1(Ai) ∈ IX : τ(f−1(Ai)) > 0 and τ ∗(f−1(Ai)) ≤ 1

2
, i ∈ J} is a cover

of X.

Since X is almost intuitionistic fuzzy half-compact, there exists a
finite subset Jo of J such that ∪i∈Jof

−1(Ai)− = 1X . From the surjectivity
of f , (Y, σ, σ∗) is almost intuitionistic fuzzy half-compact.

Corollary 3.9. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs and f :
X → Y a surjective half-gp-map. If X is nearly intuitionistic fuzzy
half-compact, then Y is almost intuitionistic fuzzy half-compact.

Theorem 3.10. Let (X, τ, τ ∗) and (Y, σ, σ∗) be two IFTSs and f :
X → Y a surjective, half-gp-map and half-gp-open map. If X is intu-
itionistic nearly half-compact, then so is Y .

Proof. Let a family {Ai ∈ IY : σ(A) > 0 and σ∗(Ai) ≤ 1
2
, i ∈ J} be

a cover of Y . Since X is nearly intuitionistic fuzzy half-compact, there
exists a finite subset Jo of J such that ∪i∈Jo((f

−1(Ai))−)o = 1X . From
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the surjectivity of f , we have

1Y = ∪i∈Jof(((f−1(Ai))−)o)

⊆ ∪i∈Jo(f(f−1(Ai))−)o

⊆ ∪i∈Jo(f(f−1((Ai)−)o

= ∪i∈Jo((Ai)−)o.

Hence ∪i∈Jo((Ai)−)o = 1Y . Thus (Y, σ) is nearly intuitionistic fuzzy
half-compact.
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