DOI QR코드

DOI QR Code

Effects of Different Ratios of Nonfibrous Carbohydrate to Ruminally Degradable Protein on In Vitro Fermentation and Lactation Performance of Dairy Cows

비섬유탄수화물과 반추위분해단백질의 다른 비율이 In Vitro 발효와 젖소의 산유성적에 미치는 영향

  • Published : 2005.08.31

Abstract

This study was conducted to determine effects of different ratios (3.5, 3.0 and 2.5) of nonfibrous carbohydrate (NFC) to ruminally degradable protein (RDP) on in vitro fermentation and lactation performance of dairy cows and optimum ratio of NFC to RDP in dairy rations. In vitro trial was conducted up to 12 hr with ruminal fluidtaken from ruminally cannulated Holstein cows. The level of dietary NFC did not affect ruminal pH. The ammonia-N concentration was not significantly different among treatments until 6 hr incubation, however, it was significantly (P < 0.05) decreased as the ratio of dietary NFC to RDP increased on 9 and 12 hr incubation. For volatile fatty acids, concentrations of both acetate and propionate were significantly (P < 0.05) increased on 3 hr incubation as dietary NFC contents of treatments increased, in other incubation times, they had no significant differences among treatments. Valerate and A:P ratio were not affected by the ratio of NFC to RDP. Isoacids and total VFAs were significantly (P < 0.05) increased with increasing dietary NFC contents and their values were highest in the treatment of 3.0 ratio. Meanwhile, for in vivo trial, 18 Holstein lactating cows were allotted to treatments in three groups of 6 cows. They were employed for 24 weeks to investigate nutrient intakes, and milk yield and composition according to different ratios of dietary NFC to RDP. Intakes of dry matter and energy were significantly (P < 0.01) increased, but NDF intake was significantly (P < 0.01) decreased as the ratio of dietary NFC to RDP increased. Milk yield for the ratio of 3.5 (32.7 kg) was significantly (P < 0.05) higher than those of other treatments. Milk fat (%) was significantly (P < 0.05) higher for the treatments of 3.0 (3.79 %) and 2.5 (3.79 %) than that (3.48 %) for the ratio of 3.5, but milk fat yield was not different among treatments. Contents and yields for milk protein and solids-not fat were linearly (P < 0.01) increased as the ratio of dietary NFC to RDP increased. However, milk urea nitrogen concentration was significantly (P < 0.05) decreased with increasing dietary NFC levels. Our results showed that the increasing level of NFC in the diet of dairy cows enhanced ruminal fermentation, N utilization and milk production and suggested that maximal fermentation and lactation performance were achieved when the dietary ratio of NFC to RDP was more than 3.0 in dairy rations.

본 연구는 비섬유탄수화물(NFC)과 반추위분 해단백질(RDP)을 젖소사료에 다양하게 배합하여 NFC : RDP의 비율을 3.5, 3.0 및 2.5로 다양하게 조정하였을 때, in vitro 발효성상 및 젖소의 산유성적에 미치는 영향을 조사하여 적정 NFC : RDP비율을 결정하고자 실시하였다. In vitro 발효시험은 반추위 cannulae가 장착된 Holstein 젖소로부터 반추위액을 얻어 3, 6, 9, 12시간 동 안 배양하였다. 반추위내 pH는 NFC비율이 증가함에 따라 유의한 영향을 받지 않았고, 암모 니아질소농도는 배양 6시간까지 처리군간에 유의한 차이가 나타나지 않았으나, 9시간과 12 시간에서는 NFC : RDP비율이 증가함에 따라 유의하게 감소하였다(P < 0.05). 휘발성지방산생산 량은 acetate 및 propionate농도가 발효 3시간에 NFC함량이 증가함에 따라 유의하게 증가하였 으나(P < 0.05), 나머지 시간대에서는 유의차가 나타나지 않았다. Valerate 및 A : P비율은 NFC : RDP비율에 의하여 영향을 받지 않았고, iso- acids 및 총 휘발성지방산은 전반적으로 NFC함 량이 증가함에 따라 유의하게 증가하였으며(P < 0.05), 3.0비율구가 가장 높은 값을 나타내었다(P < 0.01). 한편, 사양시험은 18 두의 착유우를 공시하여 처리구당 6 두씩 배치하여 총 24주간 실시하였 다. 건물 및 에너지섭취량은 NFC : RDP비율이 증가함에 따라 유의하게 증가하였고(P < 0.01), 섬 유소섭취량은 NFC : RDP비율이 감소함에 따라 직선적으로 증가하였다(P < 0.01). 산유량은 3.5(32.7 kg)비율구가 다른 처리구보다 유의하게 높았다(P < 0.05). 유지방율은 3.0(3.79 %) 및 2.5(3.79 %)비율구가 3.5(3.48 %)비율구보다 유의하 게 높았고(P < 0.05), 유지방생산량은 처리구간 에 차이가 나타나지 않았다. 유단백질과 무지 고형분은 NFC : RDP비율이 증가함에 따라 직선 적으로 증가하였다(P < 0.01). 그러나 우유중 요소태질소농도는 NFC함량이 증가함에 따라 유 의하게 감소하였다(P < 0.05). 이상의 결과로부터 사료내 증가하는 수준의 NFC는 반추위발효, 질소이용효율 및 산유량을 향상시켰고, 사료중 NFC : RDP비율이 3.0이상일 때 반추위발효뿐만 아니라 산유성적이 최대화되는 것으로 나타났다.

Keywords

References

  1. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC
  2. Arleli, A., Shabi, Z., Bruckental, I., Tagari, H., Aharoni, Y., Zamwell, S. and Voet, H. 1996. Effect of the degradation of organic matter and crude protein on rumen fermentation in dairy cows. J. Dairy Sci. 79:1774-1780 https://doi.org/10.3168/jds.S0022-0302(96)76545-1
  3. Ben-Ghedalia, D., Yosef, E., Miron, J. and Est,. Y. 1989. The effects of starch- and pectin-rich diets on quantitative aspects of digestion in sheep. Anim. Feed Sci. Technol. 24:289-298 https://doi.org/10.1016/0377-8401(89)90150-8
  4. Casper, D. P., Maiga, H. A., Brouk, M. J. and Schingoethe, D. J. 1999. Synchronization of carbohydrate and protein sources on fermentation and passage rate in dairy cows. J. Dairy Sci. 82:1779-1790 https://doi.org/10.3168/jds.S0022-0302(99)75408-1
  5. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and anunonia. Clin. Biochem. 8: 130-132
  6. Danfaer, A. 1994. Nutrient metabolism and utilization in the liver. Livest. Prod. Sci. 39:115-127 https://doi.org/10.1016/0301-6226(94)90163-5
  7. Elliott, J. P., Drackley, J. K., Fahey, Jr. G. C. and Shanks, R. D. 1995. Utilization of supplemental fat by dairy cows fed diets varying in content of nonstructural carbohydrates. J. Dairy Sci. 78:1512-1525 https://doi.org/10.3168/jds.S0022-0302(95)76773-X
  8. Erwin, E. S., Marco, S. J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44:1768-1771 https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  9. Feng, P., Hoover, W. H., Miller, T. K. and Blauwiekel, R. 1993. Interactions of fiber and nonstructural carbohydrates on lactation and ruminal function. J. Dairy Sci. 76:1324-1333 https://doi.org/10.3168/jds.S0022-0302(93)77463-9
  10. Hatfield, R D. and Weimer, P. J. 1995. Degradation characteristics of isolated and in situ cell wall lucerne pectic polysaccharides by mixed ruminal microbes. J. Sci. Food Agric. 69:185-196 https://doi.org/10.1002/jsfa.2740690208
  11. Hoover, W. H and Stokes, S. R. 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 74:3630-3644 https://doi.org/10.3168/jds.S0022-0302(91)78553-6
  12. Khorasani, G. R, Boer, G. D., Robinson, B. and Kennelly, J. J. 1994. Influence of dietary protein and starch on production and metabolic responses of dairy cows. J. Dairy Sci. 77:813-824 https://doi.org/10.3168/jds.S0022-0302(94)77016-8
  13. Klusmeyer, T. H., McCarthy, R. D., Clark, Jr., J. H. and Nelson, D. R. 1990. Effects of source and amount of protein on ruminal fermentation and passage of nutrients to the small intestine of lactating cows. J. Dairy Sci. 73:3526-3537 https://doi.org/10.3168/jds.S0022-0302(90)79052-2
  14. Lykos, T., Varga, G. A. and Casper, D. 1997. Varying degradation rates of total non-structural carbohydrates: Effects on ruminal fermentation, blood metabolites, and milk production and composition in high producing Holstein cows. J. Dairy Sci. 80:3341-3355 https://doi.org/10.3168/jds.S0022-0302(97)76310-0
  15. Mabjeesh, S. J., Arieli, A., Bruckental, I., Zamwell, S. and Tagari, H. 1997. Effect of ruminal degradability of crude protein and nonstructural carbohydrates on the efficiency of bacterial crude protein synthesis and amino acid flow to the abomasum of dairy cows. J. Dairy Sci. 80:2939-2949 https://doi.org/10.3168/jds.S0022-0302(97)76260-X
  16. Maeng, W. J., Van Nevel, C. J., Baldwin, R. L. and Morris, J. G. 1976. Rumen microbial growth rates and yields : Effect of amino acids and protein. J. Dairy Sci. 59:68-79 https://doi.org/10.3168/jds.S0022-0302(76)84157-4
  17. McCarthy, R.D., Klusmeyer, Jr., T. H., Vicini, J. L., Clark, J. H and Nelson, D. R. 1989. Effects of source of protein and carbohydrate on nuninal fermentation and passage of nutrients to the small intestine of lactating cows. J. Dairy Sci. 72:2002-2016 https://doi.org/10.3168/jds.S0022-0302(89)79324-3
  18. Mertens, D. R. 1979. Effects of buffers upon fiber digestion. Page 65 in Regulation of Acid-Base Balance. W. H Hale and P. Meinhardt, ed. Church and Dwight Co., Inc., Nutley, NJ
  19. Mertens, D. R 1992. Nonstructural and structural carbohydrates. Pages 219 to 235 in Large Dairy Herd Management. H. H. Van Hom and C. J. Wilcox, ed. American Dairy Science Association, Champaign, IL
  20. Miller, T. K., Hoover, W. H, Poland, W. W., Wood, Jr., R. W. and Thayne, W. V. 1990. Effects of low and high fill diets on intake and milk production in dairy cows. J. Dairy Sci. 73:2453-2459 https://doi.org/10.3168/jds.S0022-0302(90)78930-8
  21. Murphy, M. R, Baldwin, R. L. and Koong, L. J. 1982. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J. Anim. Sci. 71 :411-421
  22. Nocek, J. E. and Russell, J. B. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 71:2070-2107 https://doi.org/10.3168/jds.S0022-0302(88)79782-9
  23. NRC (National Research Council). 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC
  24. SAS. 2000. $SAS/STAT^{\circledR}$ User's guide (Release 8.1 ed.). Statistics, SAS Inst, Inc., Cary, NC
  25. Satter, L. D. and Slyter, L. L. 1974. Effect of ammonia concentration on rumen microbial protein in vitro. Br. J. Nutr. 32: 199-208 https://doi.org/10.1079/BJN19740073
  26. Sievert, S. J. and Shaver, R. D. 1990. Effects of nonfiber carbohydrate level and Aspergillus oryzae fermentation extract on intake, milk production, and digestion in lactating dairy cows. J. Dairy Sci. 73(Suppl, 1): 127.(Abstr)
  27. Steel, R. G. D. and Tome, J. H. 1980. Principles and procedures of statistics. A Biometrical approach (2nd eds.). McGraw-Hili, Inc
  28. Stem, M. D., Varga, G. A., Clark, J. H., Firkins, J. L, Huber, J. T. and Palmquist, D. L. 1994. Evaluation of chemical and physical properties of feeds that affect protein metabolism in the rumen. J. Dairy Sci. 77:2762-2786 https://doi.org/10.3168/jds.S0022-0302(94)77219-2
  29. Stokes, S. R, Hoover, W. H., Miller, T. K. and Manski, R. P. 1991. Impact of carbohydrate and protein levels on bacterial metabolism in continuous culture. J. Dairy Sci. 74:860-870 https://doi.org/10.3168/jds.S0022-0302(91)78235-0
  30. Stonn, E. and 0rskov, E. R. 1983. The nutritive value of rumen micro-organism in ruminants. I. Large scale isolation as chemical composition of rumen micro-organism. Br. J. Nutr. 50:463
  31. Sutton, J. D. 1989. Altering milk composition by feeding. J. Dairy Sci. 72:2801-2814 https://doi.org/10.3168/jds.S0022-0302(89)79426-1
  32. Tilley, J. M. A. and Terry, R. A. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 18:104-111 https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  33. Valadares Filho, S. C., Broderick, G. A., Valadares, R. F. D. and Gayton, M K 2000. Effect of replacing alfalfa silage with high moisture com on nutrient utilization and milk production. J. Dairy Sci. 83: 106-114 https://doi.org/10.3168/jds.S0022-0302(00)74861-2
  34. Valadares, R. F. D., Broderick, G. A., Valadares Filho, S. C. and Clayton, M. K. 1999. Effect of replacing alfalfa silage With high moisture com on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 82:2686-2696 https://doi.org/10.3168/jds.S0022-0302(99)75525-6
  35. Van Soest, P. J., Roberts, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  36. Varga, G. A., Hoover, W. H., Junkins, L. L. and Shriver, B. J. 1988. Effects of urea and isoacids on in vitro fermentation of diets containing formaldehyde-treated or untreated soybean meal. J. Dairy Sci. 71:737
  37. WindschitI, P. M. and Schingoethe, D. J. 1984. Microbial protein synthesis in rumens of cows fed dried whole whey. J. Dairy Sci. 67:3061-3068 https://doi.org/10.3168/jds.S0022-0302(84)81673-2
  38. 이성훈, 김현진, 조익환, 안종호, 장문백, 맹원재. 2001. 가용성 탄수화물이 반추위 발효특성과 미생물 성장에 미치는 영향. 한국동물자원과학회지 43(5):695-706