DOI QR코드

DOI QR Code

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION

  • Shin, Won-Tae (Marine Environment Division, Ministry of Marine Affairs and Fisheries) ;
  • Sung, Nak-Chang (Department of Environmental Engineering, Dong-A University)
  • 발행 : 2005.06.30

초록

The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.

키워드

참고문헌

  1. B. Blume, 'Preparing Ultrapure Water,' Chem. Eng. Prog., 83, 55-57 (1987)
  2. P. L. Yue, 'Modeling of Kinetics and Reactor for Water Purification by PhotoOxidation,' Chem. Eng. Sci., 48, 1-11 (1993) https://doi.org/10.1016/0009-2509(93)80278-X
  3. R. A. Govemal, 'Ultrapure Water: A Battle Every Step of the Way,' Sernicond. Int., 17, 176-178 (1994)
  4. T. Ikeda, R. Muragishi, R. Bairinji, and T. Uemura, 'Advanced Reverse Osmosis Membrane Modules for Novel Ultrapure Water Production Process,' Desalination, 98, 391-400 (1994) https://doi.org/10.1016/0011-9164(94)00165-0
  5. K. Li, I. Chua, W. J. Ng, and W. K. Teo, 'Removal of Dissolved Oxygen in Ultrapure Water Production Using a Membrane Reactor,' Chem. Eng. Sci., 50, 3547-3556 (1995) https://doi.org/10.1016/0009-2509(95)00192-8
  6. M. Miyamoto, T. Tatsuno, and Y. Ohta, 'Advanced Ultrapure Water by HF Addition,' J. Electrochem. Soc., 140, 2546-2549 (1993) https://doi.org/10.1149/1.2220859
  7. C. Calmon, 'Recent Developments in Water Treatment by Ion Exchange,' React. Polym., 4, 131-146 (1986)
  8. T. Ohmi, T. Isagawa, T. Imaoka, and I. Sugiyama, 'Ozone Decomposition in Ultrapure Water and Continuous Ozone Sterilization for a Semiconductor Ultrapure Water System,' J. Electrochem. Soc., 139, 3336-3345 (1992) https://doi.org/10.1149/1.2069075
  9. T. Isagawa, M. Kogure, T. Futatsuki, and T. Ohmi, 'Organic Adsorption onto Si Wafer Surface and Their Removal Using Ozonized Ultrapure Water for Semiconductor Manufacturing,' In Proceedings of the Annual Semiconductor Pure Water and Chemicals Conference; Balazs Analytical Laboratory: Sunnyvale, CA, pp. 117-139 (1993)
  10. J. F. W. Parker, G. F. Greaves, and H. V. Smith, 'The Effect of Ozone on the Viability of Cryptosporidium Parvum Oocysts and a Comparison of Experimental Methods,' Water Sci. Technol., 27, 93-96 (1993)
  11. D. G. Korich, J. R. Mead, M. S. Madore, N. A. Sinclair, and C. R. Sterling, 'Effects of Ozone, Chlorine Dioxide, Chlorine, and Monochloroamine on Cryptosporidium Parvum Oocyst Viability,' Appl. Environ. Microbiol., 56, 1423-1429 (1990)
  12. M. D. Gurol and P. C. Singer, 'Dynamics of the Ozonation of Phenol,' Water Res., 17, 1163-1171 (1983) https://doi.org/10.1016/0043-1354(83)90057-X
  13. K. Kawada, J. Tanaka, N. Uchiyama, H. Yagi, Y. Toriyama, and A. Uemka, 'Nonionic Silica Removal Using Ozone-UV Treatment for Semiconductor Ultrapure Water Systems,' In Proceedings of the Annual Semiconductor Pure Water and Chemicals Conference; Balazs Analytical Laboratory: Sunnyvale, CA, pp. 1-20 (1994)
  14. B. Sun, M. Sato, A. Harano, and J. S. Clements, 'Non-Uniform Pulse DischargeInduced Radical Production In Distilled Water,' J. Electrostat., 43, 115-126 (1998) https://doi.org/10.1016/S0304-3886(97)00166-6
  15. A. A. Joshi, B. R. Locke, P. Arce, and W. C. Finney, 'Formation of Hydroxyl Radicals, Hydrogen Peroxide and Aqueous Electrons by Pulsed Streamer Corona Discharge in Aqueous Solution,' J. Hazard. Mater., 41, 3-30 (1995) https://doi.org/10.1016/0304-3894(94)00099-3
  16. J.-S. Chang, P. A. Lawless, and T. Yamamoto, 'Corona Discharge Processes,' IEEE Trans. Plasma Sci., 19, 1152-1166 (1991) https://doi.org/10.1109/27.125038
  17. W.-T. Shin, S. Yiacoumi, and C. Tsouris, 'Experiments on Electrostatic Dispersion of Air in Water,' Ind. Eng. Chem. Res., 36, 3647-3655 (1997) https://doi.org/10.1021/ie970008q
  18. C. Tsouris, D. W. DePaoli, J. Q. Feng, O. A. Basaran, and T. C. Scott, 'Electrostatic Spraying of Nonconductive Fluids into Conductive Fluids,' AIChE J., 40, 1920-1923 (1994) https://doi.org/10.1002/aic.690401116
  19. C. Tsouris, D. W. DePaoli, J. Q. Feng, and T. C. Scott, 'An Experimental Investigation of Electrostatic Spraying of Nonconductive Fluids into Conductive Fluids,' Ind. Eng. Chem. Res., 34, 1394-1403 (1995) https://doi.org/10.1021/ie00043a047
  20. C. Tsouris, W.-T. Shin, and S. Yiacoumi, 'Spraying, Pumping, and Mixing of Fluids by Electric Fields,' Can. J. Chem. Eng., 76, 589-598 (1998) https://doi.org/10.1002/cjce.5450760331
  21. W.-T. Shin, A. Mirmiran, S. Yiacoumi, C. Tsouris, 'Ozonation Using Microbubbles Formed by Electric Fields,' Sep. Purif. Technol., 15, 271-282 (1999) https://doi.org/10.1016/S1383-5866(98)00107-5
  22. K. D. Buchholz and J. Pawliszyn, 'Determination of Phenols by Solid-Phase Microextraction and Gas Chromatographic Analysis,' Environ. Sci. Technol., 27, 2844-2848 (1993) https://doi.org/10.1021/es00049a026
  23. K. Rakness, G. Gordon, B. Langlais, W. Masschelein, N. Matsumoto, Y. Richard, C. M. Robson, and I. Somiya, 'Guideline for Measurement of Ozone Concentration in the Process Gas from an Ozone Generator,' Ozone : Sci. Eng., 18, 209-229 (1996) https://doi.org/10.1080/01919519608547327
  24. D. R. Grymonpra, W. C. Ginney, and B. R. Locke, 'Aqueous-Phase Pulsed Streamer Corona Reactor Using Suspended Activated Carbon Particles for Phenol Oxidation: Model-Data Comparison,' Chem. Eng. Sci., 54,3095-3105 (1999) https://doi.org/10.1016/S0009-2509(98)00428-X
  25. E. Hairer and G. Wanner, Solving Ordinary Differential Equations, II: Stiff and Differential- Algebraic Problems; Springer-Verlag:New York (1987)
  26. W. H. Press and S. A. Teukolsky, Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2nd ed.; Cambridge: Cambridge University Press (1994)
  27. M. Sato, T. Ohgiyama, and J. S. Clements, 'Formation of Chemical Species and Their Effects on Microorganisms Using a Pulsed High-Voltage Discharge in Water,' IEEE Trans. Ind. Appl., 32, 106-112 (1996) https://doi.org/10.1109/28.485820
  28. J. S. Clements, M. Sato, and R. H. Davis, 'Preliminary Investigation of Prebreakdown Phenomena and Chemical Reactions Using a Pulsed High-Voltage Discharge in Water,' IEEE Trans. Ind. Appl., IA-23, 224-235 (1987) https://doi.org/10.1109/TIA.1987.4504897
  29. G. Herzberg, Molecular Spectra and Molecular Structure; Van Nostrand: New York (1979)

피인용 문헌

  1. Properties of water surface discharge at different pulse repetition rates vol.116, pp.12, 2005, https://doi.org/10.1063/1.4896266
  2. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure vol.49, pp.41, 2016, https://doi.org/10.1088/0022-3727/49/41/415202