Helical Instability Wave Excitation of Swirling Jets
Wonjoong Lee* and Ray R. Taghavi**

ABSTRACT

The purpose of this investigation is to explore the possibility of using artificial mechanical means for excitation of shear layers with application in swirling jet mixing enhancement. For this purpose, a mechanical excitation device was designed and fabricated. The major system components consist of two subsonic nozzles, one swirl generator, and the excitation device. The experiments were carried out at various helical excitation modes; i.e., \(m = \pm 0, m = \pm 1, m = \pm 2, m = \pm 3 \), and \(m = \pm 4 \). Axial mean velocity measurements were made with plane and helical wave excitation using a hot-wire anemometer. The results are compared with the baseline (plane-wave excitation) at various helical modes. The acquired data is presented in 3-D mesh plots and 2-D contour plots. It was observed that new device was effective in excitation of the helical instability waves and resulting in mixing enhancement of the swirling jet.

초 록

본 연구의 목록은 기계적의 전단층 자극방법을 이용 스됨에트 혼합상의 가능성을 고찰함에 있다. 이를 위해 기계적 자극장치가 설계, 제작되었다. 주요 구성품으로는 두개의 아우족 노즐, 스ываем 발생기, 그리고 유효 자극기등이다. 실험은 다음과 같은 다양한 헬리컬 모드들에서 수행되었다; \(m = \pm 0, m = \pm 1, m = \pm 2, m = \pm 3, m = \pm 4 \). 열원유속계를 이용한 plane 과도와 헬리컬 과도 자극에 따른 제트속도 측정이 이루어졌다. 다양한 헬리컬 모드에서의 결과 값들이 기준 값(plane-wave)과 비교되었다. 획득된 결과는 3-D mesh plot과 2-D contour plot으로 표현되었다. 이로써 새로운 고안된 장치는 헬리컬 불안정성 자극에 대한 효과를 입증하였고 또한 결과적으로 스됨에주의 혼합을 증진시켰다.

Key Words : Jet mixing(제트혼합), Swirl jet(스ולם에트), Helical mode(헬리컬 모드), Mechanical excitation(기계적 자극), Hot-wire anemometer(열선유속계)

I. 서 론

무차원 변수인 스ולם수는 각모멘텀 flux와 축모멘텀 flux 및 노즐출구방정의 길의 비로 정의되며, Strouhal number는 자극주파수와 노즐출구직경의 길에 대한 유속의 비로 정의된다.

1980년대 말부터 수차례에 걸쳐 스ולם에트의 저전폭 응항자극을 이용한 유동체에 관한 다양한 시도가 행하여졌다[1,2]. 이들 실험에는 제트 스ולם수 \(S = 0.35 \), 자극용 응항 레벨은 126 dB을 이용하였다. 그러나 Strouhal number 0.4 자극에 의하여 불안정성 파동이 최대로 성장 함에도 불구하고, 이 응항 자극이 스ולם에트의 혼합특성에
는 아무런 영향을 미치지 못하였고 단지 고전폭 eletro-pneumatic 자극장치가 낮은 스릴수 (S=0.12)의 제트를 자극할 때에만 비로소 환합증 진효과를 관찰 할 수 있었다[3].

이론적인 고찰에 따르면 스릴제트에 대한 counter-spin 과정이 가장 큰 공간 증폭을 결과를 나타낸다[4]. 그러므로 helical 과정에 의한 스릴제트의 자극은 plane 과정과 비교하여 가른 큰 환합증진효과를 보여주어야만 한다. 그러나 이같이 자연적으로 빠르게 성장하는 불안정성 과정을 자극시키기 위한, 순수하고 제어 가능한 헬리컬 과정을 생성하는 것은 항상 어려운 과제이다. 제트의 주변에 스릴커의 배렬을 통한 몇몇 시도가 행해졌다[5,6]. 여러 문제점들 중에서도 장치배열의 복잡성 및 고온 제트에의 적용불가능 이들 중 요한 물리적 현상의 설계적이고 설용적인 구현에 장애가 되었다.

본 연구에서는 앞선 연구들의 한계를 극복하기 위해 새로운 기계적 자극장치를 설계/제작하고 시험을 수행하였다. 이들 시험결과를 바탕으로, 본 연구에 고안/작용된 기계적 자극장치가 생성한 헬리컬 불안정성 과정이 스릴제트 환합특성 제어에 실질적인 효과가 있음을 입증하였다.

II. 본 론

2.1 시험장치 구성

본 연구에 사용된 시험장치 구성은 Fig. 1과 같다. 주요 장치로는 송풍기, 유동 콘디셔너, 어댑터, 배인형 스릴 발생기, 노즐 그리고 유동자극

Fig. 1 General arrangement of test facility

Fig. 2. Schematic of swirl generator (Front View)

Fig. 3. Schematic of swirl generator (Side View)
장치 동이다. 송풍기에는 출구 평균속도 기준 24.38 m/s의 공기를 공급하며, 스핀 발생기(Fig. 2 와 3)에는 8개의 베인들이 축대칭 허브를 둘러싸고 있다. 베인 각은 0°(스위침 없음)에서부터 75°까지 다양한 각 조절가능하며, 본 연구에서는 45°의 스위브가 사용되었다. 스핀 발생기, 노즐, 그리고 유동작용장치 등은 모두 투명 cast-acrylic plastic을 주 재료로 사용하여 유동가시화를 통한 관찰 가능하도록 설계하였다.

2.2 기계적 자극장치

Fig. 4 와 5에 도시된 바와 같이 기계적 자극 장치는 회전하는 직경 9.53 cm의 원통과 안쪽면에 축방향으로 부착된 lobe들로 구성된다. 이들 노즐 원통은 전자모터에 V-벨트로 연결되어 양방향(시계방향, 반시계방향) 모두 회전 가능하다. 모터의 회전수는 설정 RPM의 1.6% 내의 오차범위에서 유지되도록 하였고 본 실험에서는 800 rpm을 선택하였다. Helical과의 생성을 위해 원통 안내면에 위치한 lobe들에 의한 spinning disturbance가 스위치트의 전단층에 영향을 미치게 된다. 이들 lobe들은 직경 4.24 mm의 원통형 박대로 설린다 전체에 걸쳐 안쪽면에 위치하게 되며, 얇은 plastic tape로 고정되어 lobe에 의한 급격한 표면형상 변화를 방지한다.

한 개부터 네 개까지 균일 간격으로 lobe의 배치가 가능하며, 다양한 helical 불안정성 모드를 구현하기 위해 lobe의 개수를 가감 설정할 수 있다; m=0, m=±1, m=±2, m=±3, m=±4 (Fig. 6). 여기서 m=±0은 plane-wave 자극을, m=±1은 첫 번째 helical 모드(lobe 한개)를, m=±2는 두번째 helical 모드(lobe 두개)를 각각 나타낸다. 그리고 움직임의 기호는 각각 스릴방향과의 반대방향 혹은 동일방향을 나타낸다.

2.3 시험결과

열선유속계를 이용한 시간평균 축방향 속도 측정이 수행되었다. 노즐 출구로부터 후류방향으로 출구직경의 3배에 해당하는 거리에서 노즐의 축방향 중심선에 수직인 평면에 대하여 측정하였 다. 획득된 결과는 우선 3-D mesh plot으로 스 wygl
Fig. 7. Distribution of mean axial velocity at x/D=3 (m=+0)

Fig. 8. Distribution of mean axial velocity at x/D=3 (m=-2)

Fig. 9. Contours of mean axial velocity at x/D=3 for various positive helical excitation modes (Contour interval at 2 ft/s)

The contours were observed at various helical modes (Fig. 7 and 8). The contour plots were compared to the baseline data. Multiple contour plots were presented, varying from low to high helical modes (Fig. 9 and 10). The contour lines were drawn from 0.61 m/s (2 ft/s) to 0.61 m/s, showing a clear pattern of helical excitation modes. The m=+0 (lobe) case showed a baseline-like pattern. However, multiple modes showed variations, with the differences becoming more evident as the helical modes increased (Fig. 11 and 12).
Fig. 10. Contours of mean axial velocity at x/D=3 for various negative helical excitation modes (Contour interval at 2 ft/s)

Fig. 11. Comparison of radial profiles of the mean profiles of the mean axial velocity at x/D=3 for various positive helical excitation modes

Fig. 12. Comparison of radial profiles of the mean profiles of the mean axial velocity at x/D=3 for various negative helical excitation modes

Fig. 9에서 보여진 바와 같이 스월 발생기의 중심하부 cone에 의한 wake 효과가 두려이 나타나고 축방향 속도의 둥글(double-humped) 부분의 변화가 관찰된다. 땅 혹은 육의 다양한 헬리컬 모드(m=±1 에서 m=±4 까지)에서의 자극들이 유동의 전단층 뿐만 아니라 스월제트의 중심부(vortex core)의 형상들도 변화된을 볼 수 있다. 육의 헬리컬 모드 자극의 경우 속도분포 곤란이의 감소와 생물 분포의 최고(peak)점 높이가 낮아짐을 볼 수 있다. 특히 m=2의 경우 헬리컬 자극이 없는 경우(m=+0)와 비교하여 최고속도에 있어 약 16%의 감소가 이루어졌고, 골의 길이